Estimation of the impact of biomass burning based on regional transport of PM2.5 in the Colombian Caribbean

Geoscience Frontiers - Tập 13 - Trang 101152 - 2022
Jehison Bolaño-Truyol1, Ismael L. Schneider1, Heidis Cano Cuadro1, Jorge D. Bolaño-Truyol2, Marcos L.S. Oliveira1,3,4
1Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla, Atlántico, Colombia
2Department of Productivity and Innovation, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla, Atlántico, Colombia
3Faculdade Meridional IMED, 304–Passo Fundo, RS, 99070–220, Brazil
4Universidad de Lima, Avenida Javier Prado Este 4600, Santiago de Surco 1503, Peru

Tài liệu tham khảo

Amegah, 2018, Proliferation of low-cost sensors. What prospects for air pollution epidemiologic research in Sub-Saharan Africa?, Environ. Pollut., 241, 1132, 10.1016/j.envpol.2018.06.044 Barranquilla, 2016 DANE – Departamento Administrativo Nacional de Estadística, 2018 Guo, 2018, Improving PM2.5 forecasting and emission estimation based on the Bayesian Optimization Method and the coupled FLEXPART-WRF model, Atmosphere, 9, 428, 10.3390/atmos9110428 Hoyos, 2017, The environmental envelope of fires in the Colombian Caribbean, Appl. Geogr., 84, 42, 10.1016/j.apgeog.2017.05.001 Huang, 2014, Characterization of PM2.5 major components and source investigation in suburban Hong Kong: a one year monitoring study, Aerosol Air Qual. Res., 14, 237, 10.4209/aaqr.2013.01.0020 Islam, 2019, Ambient air quality in the Kathmandu Valley, Nepal during the pre-monsoon: concentrations and sources of particulate matter and trace gases, Atmos. Chem. Phys., 20, 2927, 10.5194/acp-20-2927-2020 IUFRO – International Union of Forest Research Organizations, 2018, Global Fire Challenges in a Warming World, 2018 Kota, 2018, Year-long simulation of gaseous and particulate air pollutants in India, Atmos. Environ., 180, 244, 10.1016/j.atmosenv.2018.03.003 Lai, 2019, Design and application of a hybrid assessment of air quality models for the source apportionment of PM2.5, Atmos. Environ., 212, 116, 10.1016/j.atmosenv.2019.05.038 Li, 2018, Investigation of the fire radiative energy biomass combustion coefficient: A comparison of polar and geostationary satellite retrievals over the conterminous United States, J. Geophys. Res.–Biogeo, 123, 722, 10.1002/2017JG004279 Li, 2019, Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP), Atmos. Chem. Phys., 19, 12545, 10.5194/acp-19-12545-2019 Malamakal, 2013, Prescribed burn smoke impact in the Lake Tahoe Basin: model simulation and field verification, Int. J. Environ. Pollut., 52, 225, 10.1504/IJEP.2013.058457 Masiol, 2019, Long-term trends (2005–2016) of source apportioned PM2.5 across New York State, Atmos. Environ., 201, 110, 10.1016/j.atmosenv.2018.12.038 Noda, 2019, Aerosol from biomass combustion in Northern Europe: Influence of meteorological conditions and air mass history, Atmosphere, 10, 789, 10.3390/atmos10120789 Oliveira, 2020, Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica, J. Clean. Prod., 248, 119250, 10.1016/j.jclepro.2019.119250 Pereira, 2017, Burned area mapping in the Brazilian Savanna using a one-class support vector machine trained by active fires, Remote Sens., 9, 1161, 10.3390/rs9111161 Prato, 2019, Determination of the area affected by agricultural burning, Atmosphere, 10, 312, 10.3390/atmos10060312 Querol, 2007, Source origin of trace elements in PM from regional background, urban and industrial sites of Spain, Atmos. Environ., 41, 7219, 10.1016/j.atmosenv.2007.05.022 Ramírez, 2019, Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity, Sci. Total Environ., 652, 434, 10.1016/j.scitotenv.2018.10.214 Ramírez, 2020, Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city, Urban Clim., 33, 100655, 10.1016/j.uclim.2020.100655 Rojas, 2019, Exposure to nanometric pollutants in primary schools: Environmental implications, Urban Clim., 27, 412, 10.1016/j.uclim.2018.12.011 Rönkkö, 2020, Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses, Environ. Res., 185, 109360, 10.1016/j.envres.2020.109360 Schneider, 2015, Atmospheric particle number concentration and size distribution in a traffic–impacted area, Atmos. Pollution Res., 6, 877, 10.5094/APR.2015.097 She, 2020, Chemical characteristics, spatiotemporal distribution, and source apportionment of PM2.5 surrounding industrial complexes in Southern Kaohsiung, Aerosol Air Qual. Res., 20, 557, 10.4209/aaqr.2020.01.0007 Silva, 2019, Impacts of the 1.5 °C global warming target on future burned area in the Brazilian Cerrado, Forest Ecol. Manag., 446, 193, 10.1016/j.foreco.2019.05.047 Silva, 2020, Implications of iron nanoparticles in spontaneous coal combustion and the effects on climatic variables, Chemosphere, 254, 126814, 10.1016/j.chemosphere.2020.126814 Silva, 2020, Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere, Chemosphere, 239, 124776, 10.1016/j.chemosphere.2019.124776 Silva, 2020, Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions, Chemosphere, 254, 126822, 10.1016/j.chemosphere.2020.126822 Turap, 2019, Chemical characteristics and source apportionment of PM2.5 during winter in the southern part of Urumqi, China, Aerosol Air Qual. Res., 19, 1325, 10.4209/aaqr.2018.12.0454 Vermote, 2009, An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power, J. Geophys. Res., 114, 10.1029/2008JD011188 Wang, 2018, Transport of central American fire emissions to the U.S. Gulf Coast: climatological pathways and impacts on Ozone and PM2.5, J. Geophys. Res.-Atmos., 123, 8344, 10.1029/2018JD028684 Wooster, 2002, Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires, Geophys. Res. Lett., 29, 2027, 10.1029/2002GL015487 Wooster, 2005, Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, J. Geophys. Res.-Atmos., 110, 10.1029/2005JD006318 Wu, 2018, Intra-continental wildfire smoke transport and impact on local air quality observed by ground-based and satellite remote sensing in New York City, Atmos. Environ., 187, 266, 10.1016/j.atmosenv.2018.06.006 Yin, 2019, Estimation of emissions from biomass burning in China (2003-2017) based on MODIS fire radiative energy data, Biogeosciences, 16, 1629, 10.5194/bg-16-1629-2019 Zhang, 2011, Estimation of biomass burned areas using multiple-satellite-observed active fires, IEEE Trans. Geosci. Remote Sensing, 49, 4469, 10.1109/TGRS.2011.2149535 Zhang, 2012, Near-real-time global biomass burning emissions product from geostationary satellite constellation, J. Geophys. Res.-Atmos., 117, 10.1029/2012JD017459 Zhou, 2018, A modeling study of the impact of crop residue burning on PM2.5 concentration in Beijing and Tianjin during a severe autumn haze event, Aerosol Air Qual. Res., 18, 1558, 10.4209/aaqr.2017.09.0334