Estimation of the hydraulic parameters of leaky aquifers based on pumping tests and coupled simulation/optimization: verification using a layered aquifer in Tianjin, China

Springer Science and Business Media LLC - Tập 27 - Trang 3081-3095 - 2019
Gang Zheng1,2, Da Ha1,2,3, Hugo Loaiciga3, Haizuo Zhou1,2, Chaofeng Zeng4, Huihui Zhang5,6
1School of Civil Engineering, Tianjin University, Tianjin, China
2Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin, China
3Department of Geography, University of California, Santa Barbara, USA
4Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan, China
5Department of Geography,, University of California,, Santa Barbara,, USA
6School of Resources and Environmental Sciences, Wuhan University, Wuhan, China

Tóm tắt

Accurate estimates of aquifer parameters are necessary for effective groundwater management and for geotechnical engineering applications. Pumping tests may be employed to estimate the hydraulic conductivity in leaky aquifer/aquitard systems. This work introduces a hybrid algorithm with global search capacity (the Genetic algorithm, GA) and local search capacity—the Levenberg-Marquardt (LM) algorithm—coupled with a modified Neuman-Witherspoon solution for leaky aquifers to estimate the aquifer’s hydraulic parameters from pumping-test data. The GA is employed to determine the initial guesses of the aquifer parameter values. The optimal parameter values are then obtained with the LM algorithm, yielding a mixed GA/LM algorithm, herein named GALMA. Results show that the drawdown trends based on the estimated parameters agree well with measured drawdown. The proposed estimation algorithm identifies aquifer parameters with greater reliability than previous approaches. Verification of the GALMA is carried out based on three pumping tests in a layered aquifer in Tianjin, China, and on four historical case studies involving diverse hydrogeological settings. The excellent match between observed drawdown and GALMA-estimated parameters demonstrates the estimation accuracy and superior performance relative to previously reported estimation methods.

Tài liệu tham khảo

Abdel-Gawad HAAA, El-Hadi HA (2009) Parameter estimation of pumping test data using genetic algorithm. In: Thirteenth international water technology conference, IWTC, vol 13, Hurghada, Egypt, March 2009 Andre J, Siarry P, Dognon T (2001) An improvement of the standard genetic algorithm fighting premature convergence in continuous optimization. Adv Eng Softw 32(1):49–60. https://doi.org/10.1016/S0965-9978(00)00070-3 Batu V (1998) Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis, vol 1. Wiley, Chichester, UK Bateni SM, Mortazavi-Naeini M, Ataie-Ashtiani B, Jeng DS, Khanbilvardi R (2015) Evaluation of methods for estimating aquifer hydraulic parameters. Appl Soft Comput 28:541–549. https://doi.org/10.1016/j.asoc.2014.12.022 Bear J (1979) Groundwater hydraulics. McGraw, New York Bozorg-Haddad O, Solgi M, Loáiciga HA (2017) Evolutionary and metaheuristic algorithms in engineering optimization. Wiley, New York Carrera J, Neuman S (1986) Estimation of aquifer parameters under transient and steady state conditions: 3. application to synthetic and field data. Water Resour Res 22(2):228–242. https://doi.org/10.1029/WR022i002p00228 Çimen M (2009) Effective procedure for determination of aquifer parameters from late time-drawdown data. J Hydrol Eng 14(5):446–452. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000012 Cooper HH (1963) Type curves for nonsteady redial flow in an infinite leaky artesian aquifer. In: Bentall R (ed) Shortcuts and special problems in aquifer tests. US Geol Surv Water Suppl Pap 1545-C Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos Trans Am Geophys Union 27(4):526–534. https://doi.org/10.1029/TR027i004p00526 Chapuis RP, Chenaf D (2003) Effects of monitoring and pumping well pipe capacities during pumping tests in confined aquifers. Can Geotech J 40(6):1093–1103. https://doi.org/10.1139/t03-059 Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Geotechnique 54(2):143–147. https://doi.org/10.1680/geot.54.2.143.36332 Cavazzuti M (2013) Design of experiments. In: Optimization methods. Springer, Heidelberg, Germany Doherty JE (2018) PEST, model-independent parameter estimation: user manual, 7th edn. Watermark, Brisbane, Australia dos Santos JS, Ballestero TP, da Silva Pitombeira E (2011) An analytical model for hydraulic fracturing in shallow bedrock formations. Groundwater 49(3):415–425. https://doi.org/10.1111/j.1745-6584.2010.00727.x Domenico PA, Mifflin MD (1965) Water from low-permeability sediments and land subsidence. Water Resour Res 1(4):563–576. https://doi.org/10.1029/WR001i004p00563 Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99 Fetter CW (2001) Applied hydrogeology. Prentice Hall, Upper-Saddle River, NJ Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI Ha D, Zheng G, Zhou H, Zeng C, Zhang H (2019) Estimation of hydraulic parameters from pumping tests in a multiaquifer system. Underground Space. https://doi.org/10.1016/j.undsp.2019.03.006 Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Eos Trans Am Geophys Union 36(1):95–100. https://doi.org/10.1029/TR036i001p00095 James S (2004) Recharge and lateral groundwater flow boundary conditions for the saturated zone site-scale flow and transport model (no. ANL-NBS-MD-000010, rev 01). Yucca Mountain Project, Las Vegas, NV. https://doi.org/10.2172/838648 Jha MK, Kumar A, Nanda G, Bhatt G (2006) Evaluation of traditional and nontraditional optimization techniques for determining well parameters from step-drawdown test data. J Hydrol Eng 11(6):617–630. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(617) Johns RA, Semprini L, Roberts PV (1992) Estimating aquifer properties by nonlinear least-squares analysis of pump test response. Groundwater 30(1):68–77. https://doi.org/10.1111/j.1745-6584.1992.tb00813.x Kapelan ZS, Savic DA, Walters GA (2003) A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. J Hydraul Res 41(5):481–492. https://doi.org/10.1080/00221680309499993 Leake SA (1991) Simulation of vertical compaction in models of regional ground-water flow. Int Assoc Hydraul Sci 30(1):A23. https://doi.org/10.1016/0148-9062(93)90350-M Leng CH, Yeh HD (2003) Aquifer parameter identification using the extended Kalman filter. Water Resour Res 39(3). https://doi.org/10.1029/2001WR000840 Lin ZY (2005) Manual of geotechnical engineering test. China Construction Industry Press, Beijing Liu XX, Xu YS, Cheng WC, Shen SL, Horpibulsuk S (2017) Investigation of hydraulic parameters of a weathered mylonite fault from field pumping tests: a case study. Bull Eng Geol Environ 76(4):1431–1448. https://doi.org/10.1007/s10064-016-0910-6 Ma L, Xu YS, Shen SL, Sun WJ (2014) Evaluation of the hydraulic conductivity of aquifers with piles. Hydrogeol J 22(2):371–382. https://doi.org/10.1007/s10040-013-1068-y Madsen K, Nielsen H, Tingleff O (2004) Methods for nonlinear least squares problems. Tech. Rep., Informatics and Mathematical Modelling, Technical University of Denmark, Kongens Lyngby, Denmark Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441 McKay LD, Cherry JA, Gillham RW (1993a) Field experiments in a fractured clay till: 1. hydraulic conductivity and fracture aperture. Water Resour Res 29(4):1149–1162. https://doi.org/10.1029/92WR02592 McKay LD, Gillham RW, Cherry JA (1993b) Field experiments in a fractured clay till: 2. solute and colloid transport. Water Resour Res 29(12):3879–3890. https://doi.org/10.1029/93WR02069 McElwee CD (1980) Theis parameter evaluation from pumping tests by sensitivity analysis. Groundwater 18(1):56–60. https://doi.org/10.1111/j.1745-6584.1980.tb03371.x Mania J, Sucche M (1978) Automatic analysis of pumping test data-application to the Boulton and Hantush hypotheses [Analyse Automatique des Donnees de Pompage D’Essai-application aux hypotheses de Boulton et d’Hantush]. J Hydrol 37:185–194 Neuman SP, Witherspoon PA (1969) Transient flow of ground water to wells in multiple-aquifer systems. Univ. of Cal., Berkeley, CA Reed P, Minsker B, Goldberg DE (2000) Designing a competent simple genetic algorithm for search and optimization. Water Resour Res 36(12):3757–3761. https://doi.org/10.1029/2000WR900231 Schafer DC (1978) Casing storage can affect pumping test data. Johnson Drill J 50(11) Sahin AU (2016) A new parameter estimation procedure for pumping test analysis using a radial basis function collocation method. Environ Earth Sci 75(3). https://doi.org/10.1007/s12665-015-5079-y Şahin AU (2018) A particle swarm optimization assessment for the determination of non-Darcian flow parameters in a confined aquifer. Water Resour Manag 32(2):751–767. https://doi.org/10.1007/s11269-017-1837-9 Samuel MP, Jha MK (2003) Estimation of aquifer parameters from pumping test data by genetic algorithm optimization technique. J Irrig Drain Eng 129(5):348–359. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(348) Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392. https://doi.org/10.1139/t11-049 Shen SL, Wu YX, Xu YS, Hino T, Wu HN (2015) Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin. Comput Geotech 68:196–207. https://doi.org/10.1016/j.compgeo.2015.03.011 Sridharan K, Ramaswamy R, Rao NL (1987) Identification of parameters in semiconfined aquifers. J Hydrol 93(1–2):163–173. https://doi.org/10.1016/0022-1694(87)90201-0 Trinchero P, Sanchez-Vila X, Copty N, Findikakis A (2008) A new method for the interpretation of pumping tests in leaky aquifers. Groundwater 46(1):133–143. https://doi.org/10.1111/j.1745-6584.2007.00384.x Wang J B (2013) Sustainable development of the deep ground-water resource under the condition of controlling land subsidence in Tianjin (in Chinese). PhD Thesis, China University of Geosciences, Hubei Sheng, China Wan W, Birch JB (2013) An improved hybrid genetic algorithm with a new local search procedure. J Appl Math. https://doi.org/10.1155/2013/103591 Wang XD, Ying ZZ, Zai JM (2008) Analytical solution of unsteady groundwater flow in limited areas (in Chinese). J Nanjing Univ Technol (Natural Science edn.) 2:010 Yang JM, Zheng G, Jiao Y (2008) Test and analysis of the aquifer at Tianjin station (in Chinese). China Civ Eng J 41(7):67–70 Yeh HD, Huang YC (2005) Parameter estimation for leaky aquifers using the extended Kalman filter, and considering model and data measurement uncertainties. J Hydrol 302(1–4):28–45. https://doi.org/10.1016/j.jhydrol.2004.06.035 Yeh H-D, Lin Y-C, Huang Y-C (2007) Parameter identification for leaky aquifers using global optimization methods. Hydrol Process 21(7):862–872. https://doi.org/10.1002/hyp.6274 Yeh, W-WG, Sun NZ (1984) An extended identifiability in aquifer parameter identification and optimal pumping test design. Water Resour Res 20(12):1837–1847. https://doi.org/10.1029/WR020i012p01837 Zeng C-F, Xue X-L, Zheng G, Xue T-Y, Mei G-X (2018) Responses of retaining wall and surrounding ground to pre-excavation dewatering in an alternated multi-aquifer-aquitard system. J Hydrol 559:609–626. https://doi.org/10.1016/j.jhydrol.2018.02.069 Zeng C-F, Zheng G, Xue X-L, Mei G-X (2019) Combined recharge: a method to prevent ground settlement induced by redevelopment of recharge wells. J Hydrol 568:1–11. https://doi.org/10.1016/j.jhydrol.2018.10.051 Zhang XS, Srinivasan R, Zhao KG, Liew MV (2009) Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrol Process 23(3):430–441. https://doi.org/10.1002/hyp.7152 Zhang YQ, Wang JH, Chen JJ, Li MG (2017) Numerical study on the responses of groundwater and strata to pumping and recharge in a deep confined aquifer. J Hydrol 548:342–352. https://doi.org/10.1016/j.jhydrol.2017.03.018 Zheng G, Zeng CF, Diao Y, Xue XL (2014) Test and numerical research on wall deflections induced by pre-excavation dewatering. Comput Geotech 62:244–256. https://doi.org/10.1016/j.compgeo.2014.08.005 Zheng G, Zhang T, Diao Y (2015a) Mechanism and countermeasures of preceding tunnel distortion induced by succeeding EPBS tunnelling in close proximity. Comput Geotech 66:53–65. https://doi.org/10.1016/j.compgeo.2015.01.008 Zheng G, Lu P, Diao Y (2015b) Advance speed-based parametric study of greenfield deformation induced by EPBM tunneling in soft ground. Comput Geotech 65:220–232. https://doi.org/10.1016/j.compgeo.2014.12.013 Zheng G, Ha D, Zeng C, Cheng X, Zhou H, Cao J (2019) Influence of the opening timing of recharge wells on settlement caused by dewatering in excavations. J Hydrol 573:534–545. https://doi.org/10.1016/j.jhydrol.2019.03.079