Estimation of the Skeletal Muscle Cross-Sectional Area of the Lower Extremity Using Structured Light Three-Dimensional Scanning Technology
Tóm tắt
We developed a method to estimate the cross-sectional area (CSA) of the lower limb skeletal muscle using lower extremity circumference measured by a three-dimensional (3D) structured light scanner. 3D scanning data and magnetic resonance (MR) images of the lower extremities of 36 volunteers were collected. MR images of the lower extremities of 31 supplementary volunteers were also obtained. The CSA and circumference of the legs of the 36 volunteers were measured using 3D scanning and MR images. The measurements based on the 3D scanning and MR images were compared and analyzed. The CSA and circumference of the lower extremity, CSA of the lower extremity without fatty acid lining, and muscle CSA in the respective positions of the 31 supplementary volunteers were measured using MR images. The relationship between the muscle CSA and lower limb circumference and CSA was analyzed. The measured circumference and CSA based on 3D scan data were consistent with those based on MR images. A better linear correlation was observed between lower limb CSA and the square of the circumference, between muscle CSA and lower limb CSA without fatty acid lining, and between muscle CSA and calf CSA. This finding indicates that the skeletal muscle CSA of the lower extremity can be estimated reliably based on lower limb circumference measured using 3D scan data. This study verified the feasibility of estimating muscle CSA using structured light 3D scanning technology and provided a simple method for monitoring muscle atrophy in space flights and clinics.
Từ khóa
Tài liệu tham khảo
LeBlanc, A., Schneider, V., Shackelford, L., West, S., Oganov, V., Bakulin, A., & Voronin, L. (2000). Bone mineral and lean tissue loss after long duration space flight. Journal of Musculoskeletal & Neuronal Interactions, 1(2), 157–160.
Trappe, S., Costill, D., Gallagher, P., Creer, A., Peters, J. R., Evans, H., Riley, D. A., & Fitts, R. H. (2009). Exercise in space: Human skeletal muscle after 6 months aboard the international space station. Journal of Applied Physiology, 106(4), 1159–1168. https://doi.org/10.1152/japplphysiol.91578.2008
Caron, M. A., Debigare, R., Dekhuijzen, P. N. R., & Maltais, F. (2009). Comparative assessment of the quadriceps and the diaphragm in patients with COPD. Journal of Applied Physiology, 107(3), 952–961. https://doi.org/10.1152/japplphysiol.00194.2009.
Prado, C. M. M., Baracos, V. E., McCargar, L. J., Reiman, T., Mourtzakis, M., Tonkin, K., Mackey, J. R., Koski, S., Pituskin, E., & Sawyer, M. B. (2009). Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clinical Cancer Research, 15(8), 2920–2926. https://doi.org/10.1158/1078-0432.Ccr-08-2242
Puthucheary, Z. A., Rawal, J., McPhail, M., Connolly, B., Ratnayake, G., Chan, P., Hopkinson, N. S., Phadke, R., Dew, T., Sidhu, P. S., Velloso, C., Seymour, J., Agley, C. C., Selby, A., Limb, M., Edwards, L. M., Smith, K., Rowlerson, A., & Rennie, M. J. (2013). Acute skeletal muscle wasting in critical illness. JAMA, 310(15), 1591–600. https://doi.org/10.1001/jama.2013.278481
Wade, R. C., & Gorgey, A. S. (2017). Anthropometric prediction of skeletal muscle cross-sectional area in persons with spinal cord injury. Journal of Applied Physiology, 122(5), 1255–1261. https://doi.org/10.1152/japplphysiol.01042.2016.
Belavy, D. L., Miokovic, T., Armbrecht, G., Richardson, C. A., Rittweger, J., & Felsenberg, D. (2009). Differential atrophy of the lower-limb musculature during prolonged bed-rest. European Journal of Applied Physiology, 107(4), 489–499. https://doi.org/10.1007/s00421-009-1136-0.
Miokovic, T., Armbrecht, G., Felsenberg, D., & Belavy, D. L. (2012). Heterogeneous atrophy occurs within individual lower limb muscles during 60 days of bed rest. Journal of Applied Physiology, 113(10), 1545–1559. https://doi.org/10.1152/japplphysiol.00611.2012.
Nicastro, H., Zanchi, N. E., da Luz, C. R., & Lancha, A. H. Jr. (2011). Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy. Brazilian Journal of Medical and Biological Research, 44(11), 1070–1079. https://doi.org/10.1590/s0100-879x2011007500125.
Beneke, R., Neuerburg, J., & Bohndorf, K. (1991). Muscle cross-section measurement by magnetic resonance imaging. European Journal of Applied Physiology and Occupational Physiology, 63(6), 424–429. https://doi.org/10.1007/BF00868073.
Scott, J. M., Downs, M., Martin, D. S., Hougland, E., Sarmiento, L., Arzeno, N., Pettit, D. R., Ploutz-Snyder, R., Cunningham, D., Jones, L. W., Do, R., & Ploutz-Snyder, L. (2021). Teleguided self-ultrasound scanning for longitudinal monitoring of muscle mass during spaceflight. Iscience. https://doi.org/10.1016/j.isci.2021.102344
Knapik, J. J., Staab, J. S., & Harman, E. A. (1996). Validity of an anthropometric estimate of thigh muscle cross-sectional area. Medicine and Science in Sports and Exercise, 28(12), 1523–1530. https://doi.org/10.1097/00005768-199612000-00013.
Heymsfield, S. B., McManus, C., Smith, J., Stevens, V., & Nixon, D. W. (1982). Anthropometric measurement of muscle mass: Revised equations for calculating bone-free arm muscle area. The American Journal of Clinical Nutrition, 36(4), 680–690. https://doi.org/10.1093/ajcn/36.4.680.
de Koning, F. L., Binkhorst, R. A., Kauer, J. M. G., & Thijssen, H. O. M. (1986). Accuracy of an anthropometric estimate of the muscle and bone area in a transversal cross-section of the arm. International Journal of Sports Medicine, 07(05), 246–249.
Forbes, G. B., Brown, M. R., & Griffiths, H. J. (1988). Arm muscle plus bone area: Anthropometry and CAT scan compared. The American Journal of Clinical Nutrition, 47(6), 929–931. https://doi.org/10.1093/ajcn/47.6.929.
Housh, D. J., Housh, T. J., Weir, J. P., Weir, L. L., Johnson, G. O., & Stout, J. R. (1995). Anthropometric estimation of thigh muscle cross-sectional area. Medicine and Science in Sports and Exercise, 27(5), 784–791.
Wade, R. C., Lester, R. M., & Gorgey, A. S. (2018). Validation of anthropometric muscle cross-sectional area equation after spinal cord Injury. International Journal of Sports Medicine, 39(5), 366–373. https://doi.org/10.1055/s-0044-102133.
Maden-Wilkinson, T. M., McPhee, J. S., Rittweger, J., Jones, D. A., & Degens, H. (2014). Thigh muscle volume in relation to age, sex and femur volume. Age, 36(1), 383–393. https://doi.org/10.1007/s11357-013-9571-6.
Dawson, R. M., Latif, Z., Haacke, E. M., & Cavanaugh, J. M. (2013). Magnetic resonance imaging-based relationships between neck muscle cross-sectional area and neck circumference for adults and children. European Spine Journal, 22(2), 446–452. https://doi.org/10.1007/s00586-012-2482-x.
Bugeja, A., Bonanno, M., & Garg, L. (2022). 3D scanning in the art & design industry. Materials Today: Proceedings, 63, 718–725. https://doi.org/10.1016/j.matpr.2022.05.069
Logozzo, S., Valigi, M. C., & Malvezzi, M. (2022). A methodology to evaluate contact areas and indentations of human fingertips based on 3D techniques for haptic purposes. Methodsx. https://doi.org/10.1016/j.mex.2022.101781
Belavy, D. L., Miokovic, T., Rittweger, J., & Felsenberg, D. (2011). Estimation of changes in volume of individual lower-limb muscles using magnetic resonance imaging (during bed-rest). Physiological Measurement, 32(1), 35–50. https://doi.org/10.1088/0967-3334/32/1/003.
Fukunaga, T., Roy, R. R., Shellock, F. G., Hodgson, J. A., Day, M. K., Lee, P. L., Kwong-Fu, H., & Edgerton, V. R. (1992). Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. Journal of Orthopaedic Research, 10(6), 926–934. https://doi.org/10.1002/jor.1100100623.
Maughan, R. J., Watson, J. S., & Weir, J. (1983). Strength and cross-sectional area of human skeletal muscle. The Journal of Physiology, 338(1), 37–49. https://doi.org/10.1113/jphysiol.1983.sp014658.
Men, Y., Young, A., Stokes, M., & Crowe, M. (1985). The size and strength of the quadriceps muscles of old. Clinical Physiology, 5(2), 145–154. https://doi.org/10.1111/j.1475-097X.1985.tb00590.x
Fukunaga, T., Miyatani, M., Tachi, M., Kouzaki, M., Kawakami, Y., & Kanehisa, H. (2001). Muscle volume is a major determinant of joint torque in humans. Acta Physiologica Scandinavica, 172(4), 249–255. https://doi.org/10.1046/j.1365-201x.2001.00867.x
Takao, S., Kaneda, M., Sasahara, M., Takayama, S., Matsumura, Y., Okahisa, T., Goto, T., Sato, N., Katoh, S., Harada, M., & Ueno, J. (2022). Diffusion tensor imaging (DTI) of human lower leg muscles: Correlation between DTI parameters and muscle power with different ankle positions. Japanese Journal of Radiology. https://doi.org/10.1007/s11604-022-01274-1.
Morse, C. I., Degens, H., & Jones, D. A. (2007). The validity of estimating quadriceps volume from single MRI cross-sections in young men. European Journal of Applied Physiology, 100(3), 267–274. https://doi.org/10.1007/s00421-007-0429-4.
Lund, H., Christensen, L., Savnik, A., Boesen, J., Danneskiold-Samsoe, B., & Bliddal, H. (2002). Volume estimation of extensor muscles of the lower leg based on MR imaging. European Radiology, 12(12), 2982–2987. https://doi.org/10.1007/s00330-002-1334-1.
Eng, C. M., Abrams, G. D., Smallwood, L. R., Lieber, R. L., & Ward, S. R. (2007). Muscle geometry affects accuracy of forearm volume determination by magnetic resonance imaging (MRI). Journal of Biomechanics, 40(14), 3261–3266. https://doi.org/10.1016/j.jbiomech.2007.04.005.
Ishida, Y., Kanehisa, H., Carroll, J. F., Pollock, M. L., Graves, J. E., & Leggett, S. H. (1995). Body fat and muscle thickness distributions in untrained young females. Medicine and Science in Sports and Exercise, 27(2), 270–274. http://europepmc.org/abstract/MED/7723652.
Hexsel, D., Dal’Forno Dini, T., Belem, L., Tanure Correa, I., & Brandao, A. (2022). Gluteal subcutaneous adipose tissue in women of different ages and body mass index observed by magnetic resonance imaging. Journal of Cosmetic Dermatology. https://doi.org/10.1111/jocd.14866.
Oka, R., Miura, K., Sakurai, M., Nakamura, K., Yagi, K., Miyamoto, S., Moriuchi, T., Mabuchi, H., Yamagishi, M., Takeda, Y., Hifumi, S., Inazu, A., Nohara, A., Kawashiri, M. A., & Kobayashi, J. (2009). Comparison of waist circumference with body mass index for predicting abdominal adipose tissue. Diabetes Research and Clinical Practice, 83(1), 100–5. https://doi.org/10.1016/j.diabres.2008.10.001