Estimation of relative binding free energy based on a free energy variational principle for the FKBP-ligand system
Tóm tắt
Predicting an accurate binding free energy between a target protein and a ligand can be one of the most important steps in a drug discovery process. Often, many molecules must be screened to find probable high potency ones. Thus, a computational technique with low cost is highly desirable for the estimation of binding free energies of many molecules. Several techniques have thus far been developed for estimating binding free energies. Some techniques provide accurate predictions of binding free energies but high large computational cost. Other methods give good predictions but require tuning of some parameters to predict them with high accuracy. In this study, we propose a method to predict relative binding free energies with accuracy comparable to the results of prior methods but with lower computational cost and with no parameter needing to be carefully tuned. Our technique is based on the free energy variational principle. FK506 binding protein (FKBP) with 18 ligands is taken as a test system. Our results are compared to those from other widely used techniques. Our method provides a correlation coefficient (r
2
) of 0.80 between experimental and calculated relative binding free energies and yields an average absolute error of 0.70 kcal/mol compared to experimental values. These results are comparable to or better than results from other techniques. We also discuss the possibility to improve our method further.