Estimation of high-order moment-independent importance measures for Shapley value analysis
Tài liệu tham khảo
Iooss, 2015, A Review on Global Sensitivity Analysis Methods, 101
Borgonovo, 2016, Sensitivity analysis: a review of recent advances, Eur. J. Oper. Res., 248, 869, 10.1016/j.ejor.2015.06.032
Borgonovo, 2007, A new uncertainty importance measure, Reliability Engineering & System Safety, 92, 771, 10.1016/j.ress.2006.04.015
Borgonovo, 2011, Moment independent importance measures: new results and analytical test cases, Risk Anal., 31, 404, 10.1111/j.1539-6924.2010.01519.x
Plischke, 2013, Global sensitivity measures from given data, Eur. J. Oper. Res., 226, 536, 10.1016/j.ejor.2012.11.047
Liu, 2009, A new computational method of a moment-independent uncertainty importance measure, Reliability Engineering & System Safety, 94, 1205, 10.1016/j.ress.2008.10.005
Wei, 2013, Monte carlo simulation for moment-independent sensitivity analysis, Reliability Engineering & System Safety, 110, 60, 10.1016/j.ress.2012.09.005
Derennes, 2019, A nonparametric importance sampling estimator for moment independent importance measures, Reliability Engineering & System Safety, 187, 3, 10.1016/j.ress.2018.02.009
Zhang, 2014, A new method for evaluating borgonovo moment-independent importance measure with its application in an aircraft structure, Reliability Engineering & System Safety, 132, 163, 10.1016/j.ress.2014.07.011
Wei, 2014, Moment-independent sensitivity analysis using copula, Risk Anal., 34, 210, 10.1111/risa.12110
Derennes, 2018, Estimation of moment independent importance measures using a copula and maximum entropy framework, 1623
Czado, 2019, Recent Developments in Vine Copula Based Modeling, 203
Kurowicka, 2006
Zhou, 2018, A vine copula–based method for analyzing the moment-independent importance measure of the multivariate output, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
Owen, 2014, Sobol’ Indices and shapley value, SIAM/ASA Journal on Uncertainty Quantification, 2, 245, 10.1137/130936233
Borgonovo, 2006, Measuring uncertainty importance: investigation and comparison of alternative approaches, Risk Anal., 26, 1349, 10.1111/j.1539-6924.2006.00806.x
Bowman, 1997, 18
Heidenreich, 2013, Bandwidth selection for kernel density estimation: a review of fully automatic selectors, AStA Advances in Statistical Analysis, 97, 403, 10.1007/s10182-013-0216-y
Page Jr, 1984, Multivariate statistics: a vector space approach, JMR, Journal of Marketing Research (pre-1986), 21, 236, 10.1177/002224378402100214
Shampine, 2008, Vectorized adaptive quadrature in matlab, J. Comput. Appl. Math., 211, 131, 10.1016/j.cam.2006.11.021
Castaings, 2012, Sampling strategies in density-based sensitivity analysis, Environmental Modelling & Software, 38, 13, 10.1016/j.envsoft.2012.04.017
Luo, 2014, A fast computational method for moment-independent uncertainty importance measure, Comput Phys Commun, 185, 19, 10.1016/j.cpc.2013.08.006
Scott, 2015
Sklar, 1959, Fonctions de répartition à n dimensions et leurs marges, Publ. inst. statist. univ. Paris, 8, 229
Der Kiureghian, 1986, Structural reliability under incomplete probability information, J. Eng. Mech., 112, 85, 10.1061/(ASCE)0733-9399(1986)112:1(85)
Plischke, 2015, Copula-based sensitivity measures of computer experiments, Safety and Reliability of Complex Engineered Systems, 10.1201/b19094-340
Plischke, 2019, Copula theory and probabilistic sensitivity analysis: is there a connection?, Eur. J. Oper. Res., 277, 1046, 10.1016/j.ejor.2019.03.034
Charpentier, 2007, The estimation of copulas: theory and practice, Copulas: From theory to application in finance, 35
Genest, 2007, Everything you always wanted to know about copula modeling but were afraid to ask, J. Hydrol. Eng., 12, 347, 10.1061/(ASCE)1084-0699(2007)12:4(347)
Jaworski, 2010, 198
Nadarajah, 2018, A compendium of copulas, Statistica, 77, 279
Fang, 2002, The meta-elliptical distributions with given marginals, J. Multivar. Anal., 82, 1, 10.1006/jmva.2001.2017
McNeil, 2009, Multivariate archimedean copulas, d-monotone functions and l1-norm symmetric distributions, The Annals of Statistics, 37, 3059, 10.1214/07-AOS556
Ribatet, 2013, Extreme value copulas and max-stable processes, Journal de la Société Française de Statistique, 154, 138
Fermanian, 2005, Goodness-of-fit tests for copulas, J. Multivar. Anal., 95, 119, 10.1016/j.jmva.2004.07.004
Genest, 2009, Goodness-of-fit tests for copulas: a review and a power study, Insurance: Mathematics and economics, 44, 199
Genest, 1993, Statistical inference procedures for bivariate archimedean copulas, J. Am. Stat. Assoc., 88, 1034, 10.1080/01621459.1993.10476372
Gijbels, 1990, Estimating the density of a copula function, Communications in Statistics-Theory and Methods, 19, 445, 10.1080/03610929008830212
K. Wen, X. Wu, Transformation-kernel estimation of the copula density, Preprint http://agecon2.tamu.edu/people/faculty/wu-ximing/agecon2/public/copula.pdf(2015).
Chen, 1999, Beta kernel estimators for density functions, Computational Statistics & Data Analysis, 31, 131, 10.1016/S0167-9473(99)00010-9
Sancetta, 2004, The bernstein copula and its applications to modeling and approximations of multivariate distributions, Econ. Theory, 20, 535, 10.1017/S026646660420305X
Okhrin, 2013, Properties of hierarchical archimedean copulas, Statistics & Risk Modeling with Applications in Finance and Insurance, 30, 21
Nielsen, 2016, Hierarchical Clustering, 195
Okhrin, 2013, On the structure and estimation of hierarchical archimedean copulas, J. Econom., 173, 189, 10.1016/j.jeconom.2012.12.001
Mazo, 2015, A class of multivariate copulas based on products of bivariate copulas, J. Multivar. Anal., 140, 363, 10.1016/j.jmva.2015.06.001
Liebscher, 2008, Construction of asymmetric multivariate copulas, J. Multivar. Anal., 99, 2234, 10.1016/j.jmva.2008.02.025
Joe, 1996, Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters, Lecture Notes-Monograph Series, 120, 10.1214/lnms/1215452614
Bedford, 2001, Probability density decomposition for conditionally dependent random variables modeled by vines, Ann. Math. Artif. Intell., 32, 245, 10.1023/A:1016725902970
Bedford, 2002, Vines: a new graphical model for dependent random variables, The Annals of Statistics, 1031
Callies, 2003, Graphical models for the evaluation of multisite temperature forecasts: comparison of vines and independence graphs, Proc. of ESREL 2003, Safety and Reliability, 1, 363
Aas, 2009, Pair-copula constructions of multiple dependence, Insurance: Mathematics and economics, 44, 182
Dissmann, 2013, Selecting and estimating regular vine copulae and application to financial returns, Computational Statistics & Data Analysis, 59, 52, 10.1016/j.csda.2012.08.010
Nagler, 2016, Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas, J. Multivar. Anal., 151, 69, 10.1016/j.jmva.2016.07.003
Nagler, 2017, Nonparametric estimation of simplified vine copula models: comparison of methods, Dependence Modeling, 5, 99, 10.1515/demo-2017-0007
Shapley, 1953, A value for n-person games, Contributions to the Theory of Games, 2, 307
Owen, 2017, On shapley value for measuring importance of dependent inputs, SIAM/ASA Journal on Uncertainty Quantification, 5, 986, 10.1137/16M1097717
Song, 2016, Shapley effects for global sensitivity analysis: theory and computation, SIAM/ASA Journal on Uncertainty Quantification, 4, 1060, 10.1137/15M1048070
B. Iooss, C. Prieur, Shapley effects for sensitivity analysis with dependent inputs: comparisons with sobol’indices, numerical estimation and applications, arXiv:1707.01334(2017).
F. Gamboa, P. Gremaud, T. Klein, A. Lagnoux, Global sensitivity analysis: a new generation of mighty estimators based on rank statistics (2020).
Bouyé, 2000, Copulas for finance-a reading guide and some applications, Available at SSRN 1032533
McNeil, 2015
L. Hernández, J. Tejero, J. Vinuesa, Maximum likelihood estimation of the correlation parameters for elliptical copulas, arXiv:1412.6316(2014).
Bucher, 1989, Time Variant Reliability Analysis Utilizing Response Surface Approach, 1
Echard, 2011, Ak-mcs: an active learning reliability method combining kriging and monte carlo simulation, Struct. Saf., 33, 145, 10.1016/j.strusafe.2011.01.002
Echard, 2013, A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models, Reliability Engineering & System Safety, 111, 232, 10.1016/j.ress.2012.10.008
Lelièvre, 2018, Ak-mcsi: a kriging-based method to deal with small failure probabilities and time-consuming models, Struct. Saf., 73, 1, 10.1016/j.strusafe.2018.01.002
Gamboa, 2016, Statistical inference for sobol pick-freeze monte carlo method, Statistics (Ber), 50, 881, 10.1080/02331888.2015.1105803
Myshetskaya, 2008, Monte carlo estimators for small sensitivity indices, Monte Carlo Methods and Applications, 13, 455
Owen, 2013, Better estimation of small sobol’sensitivity indices, ACM Transactions on Modeling and Computer Simulation (TOMACS), 23, 1, 10.1145/2457459.2457460
Harper, 1983
Morris, 1993, Bayesian design and analysis of computer experiments: use of derivatives in surface prediction, Technometrics, 35, 243, 10.1080/00401706.1993.10485320
An, 2001, Quasi-regression, J. Complex., 17, 588, 10.1006/jcom.2001.0588
Worley, 1987, Deterministic uncertainty analysis
Derennes, 2019, Nonparametric Importance Sampling Techniques for Sensitivity Analysis and Reliability Assessment of a Launcher Stage Fallout, 59
Venter, 2002, Tails of copulas, 89, 68
Frahm, 2005, Estimating the tail-dependence coefficient: properties and pitfalls, Insurance: mathematics and Economics, 37, 80
Durante, 2009, Construction of non-exchangeable bivariate distribution functions, Statistical Papers, 50, 383, 10.1007/s00362-007-0064-5
Tawn, 1988, Bivariate extreme value theory: models and estimation, Biometrika, 75, 397, 10.1093/biomet/75.3.397
Haff, 2010, On the simplified pair-copula constructionsimply useful or too simplistic?, J. Multivar. Anal., 101, 1296, 10.1016/j.jmva.2009.12.001
Stoeber, 2013, Simplified pair copula constructionslimitations and extensions, J. Multivar. Anal., 119, 101, 10.1016/j.jmva.2013.04.014
Spanhel, 2015, Simplified vine copula models: approximations based on the simplifying assumption, 715
Han, 2017, Vine copula models with glm and sparsity, Communications in Statistics-Theory and Methods, 46, 6358, 10.1080/03610926.2015.1122061
Vatter, 2018, Generalized additive models for pair-copula constructions, Journal of Computational and Graphical Statistics, 27, 715, 10.1080/10618600.2018.1451338
Schellhase, 2018, Estimating non-simplified vine copulas using penalized splines, Stat. Comput., 28, 387, 10.1007/s11222-017-9737-7
Schepsmeier, 2019, A goodness-of-fit test for regular vine copula models, Econom. Rev., 38, 25, 10.1080/07474938.2016.1222231
M.S. Kurz, F. Spanhel, Testing the simplifying assumption in high-dimensional vine copulas, arXiv:1706.02338(2017).