Estimation of high-order moment-independent importance measures for Shapley value analysis

Applied Mathematical Modelling - Tập 88 - Trang 396-417 - 2020
Gabriel Sarazin1,2, Pierre Derennes1,2, Jérôme Morio2
1Université de Toulouse, UPS IMT, Toulouse Cedex 9 F-31062, France
2ONERA/DTIS, Université de Toulouse, Toulouse F-31055, France

Tài liệu tham khảo

Iooss, 2015, A Review on Global Sensitivity Analysis Methods, 101 Borgonovo, 2016, Sensitivity analysis: a review of recent advances, Eur. J. Oper. Res., 248, 869, 10.1016/j.ejor.2015.06.032 Borgonovo, 2007, A new uncertainty importance measure, Reliability Engineering & System Safety, 92, 771, 10.1016/j.ress.2006.04.015 Borgonovo, 2011, Moment independent importance measures: new results and analytical test cases, Risk Anal., 31, 404, 10.1111/j.1539-6924.2010.01519.x Plischke, 2013, Global sensitivity measures from given data, Eur. J. Oper. Res., 226, 536, 10.1016/j.ejor.2012.11.047 Liu, 2009, A new computational method of a moment-independent uncertainty importance measure, Reliability Engineering & System Safety, 94, 1205, 10.1016/j.ress.2008.10.005 Wei, 2013, Monte carlo simulation for moment-independent sensitivity analysis, Reliability Engineering & System Safety, 110, 60, 10.1016/j.ress.2012.09.005 Derennes, 2019, A nonparametric importance sampling estimator for moment independent importance measures, Reliability Engineering & System Safety, 187, 3, 10.1016/j.ress.2018.02.009 Zhang, 2014, A new method for evaluating borgonovo moment-independent importance measure with its application in an aircraft structure, Reliability Engineering & System Safety, 132, 163, 10.1016/j.ress.2014.07.011 Wei, 2014, Moment-independent sensitivity analysis using copula, Risk Anal., 34, 210, 10.1111/risa.12110 Derennes, 2018, Estimation of moment independent importance measures using a copula and maximum entropy framework, 1623 Czado, 2019, Recent Developments in Vine Copula Based Modeling, 203 Kurowicka, 2006 Zhou, 2018, A vine copula–based method for analyzing the moment-independent importance measure of the multivariate output, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability Owen, 2014, Sobol’ Indices and shapley value, SIAM/ASA Journal on Uncertainty Quantification, 2, 245, 10.1137/130936233 Borgonovo, 2006, Measuring uncertainty importance: investigation and comparison of alternative approaches, Risk Anal., 26, 1349, 10.1111/j.1539-6924.2006.00806.x Bowman, 1997, 18 Heidenreich, 2013, Bandwidth selection for kernel density estimation: a review of fully automatic selectors, AStA Advances in Statistical Analysis, 97, 403, 10.1007/s10182-013-0216-y Page Jr, 1984, Multivariate statistics: a vector space approach, JMR, Journal of Marketing Research (pre-1986), 21, 236, 10.1177/002224378402100214 Shampine, 2008, Vectorized adaptive quadrature in matlab, J. Comput. Appl. Math., 211, 131, 10.1016/j.cam.2006.11.021 Castaings, 2012, Sampling strategies in density-based sensitivity analysis, Environmental Modelling & Software, 38, 13, 10.1016/j.envsoft.2012.04.017 Luo, 2014, A fast computational method for moment-independent uncertainty importance measure, Comput Phys Commun, 185, 19, 10.1016/j.cpc.2013.08.006 Scott, 2015 Sklar, 1959, Fonctions de répartition à n dimensions et leurs marges, Publ. inst. statist. univ. Paris, 8, 229 Der Kiureghian, 1986, Structural reliability under incomplete probability information, J. Eng. Mech., 112, 85, 10.1061/(ASCE)0733-9399(1986)112:1(85) Plischke, 2015, Copula-based sensitivity measures of computer experiments, Safety and Reliability of Complex Engineered Systems, 10.1201/b19094-340 Plischke, 2019, Copula theory and probabilistic sensitivity analysis: is there a connection?, Eur. J. Oper. Res., 277, 1046, 10.1016/j.ejor.2019.03.034 Charpentier, 2007, The estimation of copulas: theory and practice, Copulas: From theory to application in finance, 35 Genest, 2007, Everything you always wanted to know about copula modeling but were afraid to ask, J. Hydrol. Eng., 12, 347, 10.1061/(ASCE)1084-0699(2007)12:4(347) Jaworski, 2010, 198 Nadarajah, 2018, A compendium of copulas, Statistica, 77, 279 Fang, 2002, The meta-elliptical distributions with given marginals, J. Multivar. Anal., 82, 1, 10.1006/jmva.2001.2017 McNeil, 2009, Multivariate archimedean copulas, d-monotone functions and l1-norm symmetric distributions, The Annals of Statistics, 37, 3059, 10.1214/07-AOS556 Ribatet, 2013, Extreme value copulas and max-stable processes, Journal de la Société Française de Statistique, 154, 138 Fermanian, 2005, Goodness-of-fit tests for copulas, J. Multivar. Anal., 95, 119, 10.1016/j.jmva.2004.07.004 Genest, 2009, Goodness-of-fit tests for copulas: a review and a power study, Insurance: Mathematics and economics, 44, 199 Genest, 1993, Statistical inference procedures for bivariate archimedean copulas, J. Am. Stat. Assoc., 88, 1034, 10.1080/01621459.1993.10476372 Gijbels, 1990, Estimating the density of a copula function, Communications in Statistics-Theory and Methods, 19, 445, 10.1080/03610929008830212 K. Wen, X. Wu, Transformation-kernel estimation of the copula density, Preprint http://agecon2.tamu.edu/people/faculty/wu-ximing/agecon2/public/copula.pdf(2015). Chen, 1999, Beta kernel estimators for density functions, Computational Statistics & Data Analysis, 31, 131, 10.1016/S0167-9473(99)00010-9 Sancetta, 2004, The bernstein copula and its applications to modeling and approximations of multivariate distributions, Econ. Theory, 20, 535, 10.1017/S026646660420305X Okhrin, 2013, Properties of hierarchical archimedean copulas, Statistics & Risk Modeling with Applications in Finance and Insurance, 30, 21 Nielsen, 2016, Hierarchical Clustering, 195 Okhrin, 2013, On the structure and estimation of hierarchical archimedean copulas, J. Econom., 173, 189, 10.1016/j.jeconom.2012.12.001 Mazo, 2015, A class of multivariate copulas based on products of bivariate copulas, J. Multivar. Anal., 140, 363, 10.1016/j.jmva.2015.06.001 Liebscher, 2008, Construction of asymmetric multivariate copulas, J. Multivar. Anal., 99, 2234, 10.1016/j.jmva.2008.02.025 Joe, 1996, Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters, Lecture Notes-Monograph Series, 120, 10.1214/lnms/1215452614 Bedford, 2001, Probability density decomposition for conditionally dependent random variables modeled by vines, Ann. Math. Artif. Intell., 32, 245, 10.1023/A:1016725902970 Bedford, 2002, Vines: a new graphical model for dependent random variables, The Annals of Statistics, 1031 Callies, 2003, Graphical models for the evaluation of multisite temperature forecasts: comparison of vines and independence graphs, Proc. of ESREL 2003, Safety and Reliability, 1, 363 Aas, 2009, Pair-copula constructions of multiple dependence, Insurance: Mathematics and economics, 44, 182 Dissmann, 2013, Selecting and estimating regular vine copulae and application to financial returns, Computational Statistics & Data Analysis, 59, 52, 10.1016/j.csda.2012.08.010 Nagler, 2016, Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas, J. Multivar. Anal., 151, 69, 10.1016/j.jmva.2016.07.003 Nagler, 2017, Nonparametric estimation of simplified vine copula models: comparison of methods, Dependence Modeling, 5, 99, 10.1515/demo-2017-0007 Shapley, 1953, A value for n-person games, Contributions to the Theory of Games, 2, 307 Owen, 2017, On shapley value for measuring importance of dependent inputs, SIAM/ASA Journal on Uncertainty Quantification, 5, 986, 10.1137/16M1097717 Song, 2016, Shapley effects for global sensitivity analysis: theory and computation, SIAM/ASA Journal on Uncertainty Quantification, 4, 1060, 10.1137/15M1048070 B. Iooss, C. Prieur, Shapley effects for sensitivity analysis with dependent inputs: comparisons with sobol’indices, numerical estimation and applications, arXiv:1707.01334(2017). F. Gamboa, P. Gremaud, T. Klein, A. Lagnoux, Global sensitivity analysis: a new generation of mighty estimators based on rank statistics (2020). Bouyé, 2000, Copulas for finance-a reading guide and some applications, Available at SSRN 1032533 McNeil, 2015 L. Hernández, J. Tejero, J. Vinuesa, Maximum likelihood estimation of the correlation parameters for elliptical copulas, arXiv:1412.6316(2014). Bucher, 1989, Time Variant Reliability Analysis Utilizing Response Surface Approach, 1 Echard, 2011, Ak-mcs: an active learning reliability method combining kriging and monte carlo simulation, Struct. Saf., 33, 145, 10.1016/j.strusafe.2011.01.002 Echard, 2013, A combined importance sampling and kriging reliability method for small failure probabilities with time-demanding numerical models, Reliability Engineering & System Safety, 111, 232, 10.1016/j.ress.2012.10.008 Lelièvre, 2018, Ak-mcsi: a kriging-based method to deal with small failure probabilities and time-consuming models, Struct. Saf., 73, 1, 10.1016/j.strusafe.2018.01.002 Gamboa, 2016, Statistical inference for sobol pick-freeze monte carlo method, Statistics (Ber), 50, 881, 10.1080/02331888.2015.1105803 Myshetskaya, 2008, Monte carlo estimators for small sensitivity indices, Monte Carlo Methods and Applications, 13, 455 Owen, 2013, Better estimation of small sobol’sensitivity indices, ACM Transactions on Modeling and Computer Simulation (TOMACS), 23, 1, 10.1145/2457459.2457460 Harper, 1983 Morris, 1993, Bayesian design and analysis of computer experiments: use of derivatives in surface prediction, Technometrics, 35, 243, 10.1080/00401706.1993.10485320 An, 2001, Quasi-regression, J. Complex., 17, 588, 10.1006/jcom.2001.0588 Worley, 1987, Deterministic uncertainty analysis Derennes, 2019, Nonparametric Importance Sampling Techniques for Sensitivity Analysis and Reliability Assessment of a Launcher Stage Fallout, 59 Venter, 2002, Tails of copulas, 89, 68 Frahm, 2005, Estimating the tail-dependence coefficient: properties and pitfalls, Insurance: mathematics and Economics, 37, 80 Durante, 2009, Construction of non-exchangeable bivariate distribution functions, Statistical Papers, 50, 383, 10.1007/s00362-007-0064-5 Tawn, 1988, Bivariate extreme value theory: models and estimation, Biometrika, 75, 397, 10.1093/biomet/75.3.397 Haff, 2010, On the simplified pair-copula constructionsimply useful or too simplistic?, J. Multivar. Anal., 101, 1296, 10.1016/j.jmva.2009.12.001 Stoeber, 2013, Simplified pair copula constructionslimitations and extensions, J. Multivar. Anal., 119, 101, 10.1016/j.jmva.2013.04.014 Spanhel, 2015, Simplified vine copula models: approximations based on the simplifying assumption, 715 Han, 2017, Vine copula models with glm and sparsity, Communications in Statistics-Theory and Methods, 46, 6358, 10.1080/03610926.2015.1122061 Vatter, 2018, Generalized additive models for pair-copula constructions, Journal of Computational and Graphical Statistics, 27, 715, 10.1080/10618600.2018.1451338 Schellhase, 2018, Estimating non-simplified vine copulas using penalized splines, Stat. Comput., 28, 387, 10.1007/s11222-017-9737-7 Schepsmeier, 2019, A goodness-of-fit test for regular vine copula models, Econom. Rev., 38, 25, 10.1080/07474938.2016.1222231 M.S. Kurz, F. Spanhel, Testing the simplifying assumption in high-dimensional vine copulas, arXiv:1706.02338(2017).