Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

ISPRS Journal of Photogrammetry and Remote Sensing - Tập 137 - Trang 149-162 - 2018
Cheolhee Yoo1, Jungho Im1, Seonyoung Park1, Lindi J. Quackenbush2
1School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
2Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA

Tài liệu tham khảo

Agathangelidis, 2016, Estimation of air temperatures for the urban agglomeration of Athens with the use of satellite data, Geoinform. Geostat.: Overview, 4, 2 Amani, 2017, Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration, GISci. Remote Sens., 54, 779, 10.1080/15481603.2017.1331510 Arnold, 1996, Impervious surface coverage: the emergence of a key environmental indicator, J. Am. Plann. Assoc., 62, 243, 10.1080/01944369608975688 Aw, 2003, Evaluating the first-order effect of intraannual temperature variability on urban air pollution, J. Geophys. Res.: Atmos., 108 Basu, 2002, Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence, Epidemiol. Rev., 24, 190, 10.1093/epirev/mxf007 Bechtel, 2014, Estimation of dense time series of urban air temperatures from multitemporal geostationary satellite data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 4129, 10.1109/JSTARS.2014.2322449 Bechtel, 2017, Towards a satellite based monitoring of urban air temperatures, Sustain. Cities Soc., 10.1016/j.scs.2017.05.018 Beers, 1966, Notes and observations: aspect transformation in site productivity research, J. Forest., 64, 691 Belgiu, 2016, Random forest in remote sensing: a review of applications and future directions, ISPRS J. Photogramm. Remote Sens., 114, 24, 10.1016/j.isprsjprs.2016.01.011 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Burgess, 2009 Chen, 2015, A statistical method based on remote sensing for the estimation of air temperature in China, Int. J. Climatol., 35, 2131, 10.1002/joc.4113 Courault, 1999, Spatial interpolation of air temperature according to atmospheric circulation patterns in southeast France, Int. J. Climatol., 19, 365, 10.1002/(SICI)1097-0088(19990330)19:4<365::AID-JOC369>3.0.CO;2-E Duan, 2014, Generation of a time-consistent land surface temperature product from MODIS data, Remote Sens. Environ., 140, 339, 10.1016/j.rse.2013.09.003 Edwards, 2005 Gabriel, 2011, Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany, Environ. Pollut., 159, 2044, 10.1016/j.envpol.2011.01.016 Gallo, 2011, Evaluation of the relationship between air and land surface temperature under clear-and cloudy-sky conditions, J. Appl. Meteorol. Climatol., 50, 767, 10.1175/2010JAMC2460.1 Good, 2016, An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures, J. Geophys. Res.: Atmos., 121, 8801, 10.1002/2016JD025318 Grimmond, 2010, The international urban energy balance models comparison project: first results from phase 1, J. Appl. Meteorol. Climatol., 49, 1268, 10.1175/2010JAMC2354.1 Hamdi, 2011, Estimating urban heat island effects on near-surface air temperature records of Uccle (Brussels, Belgium): an observational and modeling study, Adv. Sci. Res., 6, 27, 10.5194/asr-6-27-2011 Hao, 2016, Spatiotemporal changes of urban impervious surface area and land surface temperature in Beijing from 1990 to 2014, GISci. Remote Sens., 53, 63, 10.1080/15481603.2015.1095471 Harman, 2003 Hart, 2009, Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island, Theor. Appl. Climatol., 95, 397, 10.1007/s00704-008-0017-5 Ho, 2014, Mapping maximum urban air temperature on hot summer days, Remote Sens. Environ., 154, 38, 10.1016/j.rse.2014.08.012 Hondula, 2012, Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983–2008: a case-series analysis, Environ. Health, 11, 16, 10.1186/1476-069X-11-16 Hua, 2008, The impact of urbanization on air temperature across China, Theor. Appl. Climatol., 93, 179, 10.1007/s00704-007-0339-8 Im, 2016, Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches, Environ. Earth Sci., 75, 1120, 10.1007/s12665-016-5917-6 Janatian, 2017, A statistical framework for estimating air temperature using MODIS land surface temperature data, Int. J. Climatol., 37, 1181, 10.1002/joc.4766 Jin, 2014, A study of the relations between soil moisture, soil temperatures and surface temperatures using ARM observations and offline CLM4 simulations, Climate, 2, 279, 10.3390/cli2040279 Kalnay, 2003, Impact of urbanization and land-use change on climate, Nature, 423, 528, 10.1038/nature01675 Katsouyanni, 1993, Evidence for interaction between air pollution and high temperature in the causation of excess mortality, Arch. Environ. Health: Int. J., 48, 235, 10.1080/00039896.1993.9940365 Keramitsoglou, 2016, An online system for nowcasting satellite derived temperatures for urban areas, Remote Sens., 8, 306, 10.3390/rs8040306 Kim, 2015, Landfast sea ice monitoring using multisensor fusion in the Antarctic, GISci. Remote Sens., 52, 239, 10.1080/15481603.2015.1026050 Kim, 2014, Machine learning approaches to coastal water quality monitoring using GOCI satellite data, GISci. Remote Sens., 51, 158, 10.1080/15481603.2014.900983 Knudby, 2010, New approaches to modelling fish–habitat relationships, Ecol. Model., 221, 503, 10.1016/j.ecolmodel.2009.11.008 Krüger, 2013, Accounting for atmospheric stability conditions in urban heat island studies: the case of Glasgow, UK, Landscape Urban Plann., 117, 112, 10.1016/j.landurbplan.2013.04.019 Lee, 2017, Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data, Atmos. Meas. Tech., 10, 1859, 10.5194/amt-10-1859-2017 Li, 2013, Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest, GISci. Remote Sens., 50, 361, 10.1080/15481603.2013.819161 Li, 2004, Urban heat island effect on annual mean temperature during the last 50 years in China, Theor. Appl. Climatol., 79, 165, 10.1007/s00704-004-0065-4 Li, 2013, Satellite-derived land surface temperature: current status and perspectives, Remote Sens. Environ., 131, 14, 10.1016/j.rse.2012.12.008 Liu, 2011, Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis, Environ. Health, 10, 51, 10.1186/1476-069X-10-51 Lu, 2014, Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data, Landscape Urban Plann., 130, 134, 10.1016/j.landurbplan.2014.07.005 Marquaridt, 1970, Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation, Technometrics, 12, 591, 10.1080/00401706.1970.10488699 McCutchan, 1986, Effect of elevation and aspect on wind, temperature and humidity, J. Climate Appl. Meteorol., 25, 1996, 10.1175/1520-0450(1986)025<1996:EOEAAO>2.0.CO;2 Moser, 2015, Estimation of air surface temperature from remote sensing images and pixelwise modeling of the estimation uncertainty through support vector machines, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 332, 10.1109/JSTARS.2014.2361862 Murray, 2009, Methods to quantify variable importance: implications for the analysis of noisy ecological data, Ecology, 90, 348, 10.1890/07-1929.1 Naidoo, 2012, Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment, ISPRS J. Photogramm. Remote Sens., 69, 167, 10.1016/j.isprsjprs.2012.03.005 Nemani, 1989, Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data, J. Appl. Meteorol., 28, 276, 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2 Noi, 2017, Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data, Remote Sens., 9, 398, 10.3390/rs9050398 Oke, 2002 Park, 2016, Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions, Agric. For. Meteorol., 216, 157, 10.1016/j.agrformet.2015.10.011 Piyoosh, 2017, Semi-automatic mapping of anthropogenic impervious surfaces in an urban/suburban area using Landsat 8 satellite data, GISci. Remote Sens., 54, 471, 10.1080/15481603.2017.1282414 Pokhrel, 2011, Estimation of the effective zone of sea/land breeze in a coastal area, Atmos. Pollut. Res., 2, 106, 10.5094/APR.2011.013 Price, 1980, The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation, Water Resour. Res., 16, 787, 10.1029/WR016i004p00787 Prihodko, 1997, Estimation of air temperature from remotely sensed surface observations, Remote Sens. Environ., 60, 335, 10.1016/S0034-4257(96)00216-7 Rhee, 2014, Relationship between land cover patterns and surface temperature in urban areas, GISci. Remote Sens., 51, 521, 10.1080/15481603.2014.964455 Richardson, 2017, A comparison of geographic datasets and field measurements to model soil carbon using random forests and stepwise regressions (British Columbia, Canada), GISci. Remote Sens., 54, 573, 10.1080/15481603.2017.1302181 Rodriguez-Galiano, 2012, An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens., 67, 93, 10.1016/j.isprsjprs.2011.11.002 Romero-Lankao, 2012, Urban vulnerability to temperature-related hazards: a meta-analysis and meta-knowledge approach, Global Environ. Change, 22, 670, 10.1016/j.gloenvcha.2012.04.002 Sandholt, 2002, A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status, Remote Sens. Environ., 79, 213, 10.1016/S0034-4257(01)00274-7 Schuster, 2014, Heat mortality in Berlin-Spatial variability at the neighborhood scale, Urban Clim., 10, 134, 10.1016/j.uclim.2014.10.008 Shahmohamadi, 2011, The impact of anthropogenic heat on formation of urban heat island and energy consumption balance, Urban Studies Research 2011, 10.1155/2011/497524 Shi, 2016, Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: a statistical modeling study, Environ. Res., 146, 51, 10.1016/j.envres.2015.12.006 Simpson, 1994 Smith, 1979, The influence of mountains on the atmosphere, Adv. Geophys., 21, 87, 10.1016/S0065-2687(08)60262-9 Song, 2018, Examining human heat stress with remote sensing technology, GISci. Remote Sens., 55, 19, 10.1080/15481603.2017.1354804 Sonobe, 2017, Assessing the suitability of data from Sentinel-1A and 2A for crop classification, GISci. Remote Sens., 54, 918, 10.1080/15481603.2017.1351149 Stisen, 2007, Estimation of diurnal air temperature using MSG SEVIRI data in West Africa, Remote Sens. Environ., 110, 262, 10.1016/j.rse.2007.02.025 Stoll, 1992, Surface-air temperature relationships in the urban environment of Phoenix, Arizona, Phys. Geogr., 13, 160, 10.1080/02723646.1992.10642451 Strobl, 2007, Bias in random forest variable importance measures: Illustrations, sources and a solution, BMC Bioinf., 8, 25, 10.1186/1471-2105-8-25 Sun, 2005, Air temperature retrieval from remote sensing data based on thermodynamics, Theor. Appl. Climatol., 80, 37, 10.1007/s00704-004-0079-y Vancutsem, 2010, Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa, Remote Sens. Environ., 114, 449, 10.1016/j.rse.2009.10.002 Vogt, 1997, Mapping regional air temperature fields using satellite-derived surface skin temperatures, Int. J. Climatol., 17, 1559, 10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5 Voogt, 2003, Thermal remote sensing of urban climates, Remote Sens. Environ., 86, 370, 10.1016/S0034-4257(03)00079-8 Wan, 1996, A generalized split-window algorithm for retrieving land-surface temperature from space, IEEE Trans. Geosci. Remote Sens., 34, 892, 10.1109/36.508406 Weng, 2009, Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends, ISPRS J. Photogramm. Remote Sens., 64, 335, 10.1016/j.isprsjprs.2009.03.007 Xu, 2014, Estimating daily maximum air temperature from MODIS in British Columbia, Canada, Int. J. Remote Sens., 35, 8108, 10.1080/01431161.2014.978957 Xu, 2012, Study on the estimation of near-surface air temperature from MODIS data by statistical methods, Int. J. Remote Sens., 33, 7629, 10.1080/01431161.2012.701351 Yan, 2009, Estimation of air temperature from MODIS data in east China, Int. J. Remote Sens., 30, 6261, 10.1080/01431160902842375 Yang, 2017, Evaluation of MODIS land surface temperature data to estimate near-surface air temperature in Northeast China, Remote Sens., 9, 410, 10.3390/rs9050410 Yoo, 2012, Variable selection for hedonic model using machine learning approaches: a case study in Onondaga County, NY, Landscape Urban Plann., 107, 293, 10.1016/j.landurbplan.2012.06.009 Yu, 2014, A multi-resolution global land cover dataset through multisource data aggregation, Sci. China Earth Sci., 57, 2317, 10.1007/s11430-014-4919-z Zeng, 2015, Estimation of daily air temperature based on MODIS land surface temperature products over the corn belt in the US, Remote Sens., 7, 951, 10.3390/rs70100951 Zhang, 2016, Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data, J. Geophys. Res.: Atmos., 121, 10.1002/2016JD025154 Zhang, 2017, An evaluation of monthly impervious surface dynamics by fusing Landsat and MODIS time series in the Pearl River Delta, China, from 2000 to 2015, Remote Sens. Environ., 201, 99, 10.1016/j.rse.2017.08.036 Zhang, 2015, A remote sensing method for estimating surface air temperature and surface vapor pressure on a regional scale, Remote Sens., 7, 6005, 10.3390/rs70506005 Zhu, 2013, Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products, Remote Sens. Environ., 130, 62, 10.1016/j.rse.2012.10.034 Zhang, 2018, A temperature and vegetation adjusted NTL urban index for urban area mapping and analysis, ISPRS J. Photogramm. Remote Sens., 135, 93, 10.1016/j.isprsjprs.2017.11.016