Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data
Tài liệu tham khảo
Agathangelidis, 2016, Estimation of air temperatures for the urban agglomeration of Athens with the use of satellite data, Geoinform. Geostat.: Overview, 4, 2
Amani, 2017, Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration, GISci. Remote Sens., 54, 779, 10.1080/15481603.2017.1331510
Arnold, 1996, Impervious surface coverage: the emergence of a key environmental indicator, J. Am. Plann. Assoc., 62, 243, 10.1080/01944369608975688
Aw, 2003, Evaluating the first-order effect of intraannual temperature variability on urban air pollution, J. Geophys. Res.: Atmos., 108
Basu, 2002, Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence, Epidemiol. Rev., 24, 190, 10.1093/epirev/mxf007
Bechtel, 2014, Estimation of dense time series of urban air temperatures from multitemporal geostationary satellite data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 4129, 10.1109/JSTARS.2014.2322449
Bechtel, 2017, Towards a satellite based monitoring of urban air temperatures, Sustain. Cities Soc., 10.1016/j.scs.2017.05.018
Beers, 1966, Notes and observations: aspect transformation in site productivity research, J. Forest., 64, 691
Belgiu, 2016, Random forest in remote sensing: a review of applications and future directions, ISPRS J. Photogramm. Remote Sens., 114, 24, 10.1016/j.isprsjprs.2016.01.011
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Burgess, 2009
Chen, 2015, A statistical method based on remote sensing for the estimation of air temperature in China, Int. J. Climatol., 35, 2131, 10.1002/joc.4113
Courault, 1999, Spatial interpolation of air temperature according to atmospheric circulation patterns in southeast France, Int. J. Climatol., 19, 365, 10.1002/(SICI)1097-0088(19990330)19:4<365::AID-JOC369>3.0.CO;2-E
Duan, 2014, Generation of a time-consistent land surface temperature product from MODIS data, Remote Sens. Environ., 140, 339, 10.1016/j.rse.2013.09.003
Edwards, 2005
Gabriel, 2011, Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany, Environ. Pollut., 159, 2044, 10.1016/j.envpol.2011.01.016
Gallo, 2011, Evaluation of the relationship between air and land surface temperature under clear-and cloudy-sky conditions, J. Appl. Meteorol. Climatol., 50, 767, 10.1175/2010JAMC2460.1
Good, 2016, An in situ-based analysis of the relationship between land surface “skin” and screen-level air temperatures, J. Geophys. Res.: Atmos., 121, 8801, 10.1002/2016JD025318
Grimmond, 2010, The international urban energy balance models comparison project: first results from phase 1, J. Appl. Meteorol. Climatol., 49, 1268, 10.1175/2010JAMC2354.1
Hamdi, 2011, Estimating urban heat island effects on near-surface air temperature records of Uccle (Brussels, Belgium): an observational and modeling study, Adv. Sci. Res., 6, 27, 10.5194/asr-6-27-2011
Hao, 2016, Spatiotemporal changes of urban impervious surface area and land surface temperature in Beijing from 1990 to 2014, GISci. Remote Sens., 53, 63, 10.1080/15481603.2015.1095471
Harman, 2003
Hart, 2009, Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island, Theor. Appl. Climatol., 95, 397, 10.1007/s00704-008-0017-5
Ho, 2014, Mapping maximum urban air temperature on hot summer days, Remote Sens. Environ., 154, 38, 10.1016/j.rse.2014.08.012
Hondula, 2012, Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983–2008: a case-series analysis, Environ. Health, 11, 16, 10.1186/1476-069X-11-16
Hua, 2008, The impact of urbanization on air temperature across China, Theor. Appl. Climatol., 93, 179, 10.1007/s00704-007-0339-8
Im, 2016, Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches, Environ. Earth Sci., 75, 1120, 10.1007/s12665-016-5917-6
Janatian, 2017, A statistical framework for estimating air temperature using MODIS land surface temperature data, Int. J. Climatol., 37, 1181, 10.1002/joc.4766
Jin, 2014, A study of the relations between soil moisture, soil temperatures and surface temperatures using ARM observations and offline CLM4 simulations, Climate, 2, 279, 10.3390/cli2040279
Kalnay, 2003, Impact of urbanization and land-use change on climate, Nature, 423, 528, 10.1038/nature01675
Katsouyanni, 1993, Evidence for interaction between air pollution and high temperature in the causation of excess mortality, Arch. Environ. Health: Int. J., 48, 235, 10.1080/00039896.1993.9940365
Keramitsoglou, 2016, An online system for nowcasting satellite derived temperatures for urban areas, Remote Sens., 8, 306, 10.3390/rs8040306
Kim, 2015, Landfast sea ice monitoring using multisensor fusion in the Antarctic, GISci. Remote Sens., 52, 239, 10.1080/15481603.2015.1026050
Kim, 2014, Machine learning approaches to coastal water quality monitoring using GOCI satellite data, GISci. Remote Sens., 51, 158, 10.1080/15481603.2014.900983
Knudby, 2010, New approaches to modelling fish–habitat relationships, Ecol. Model., 221, 503, 10.1016/j.ecolmodel.2009.11.008
Krüger, 2013, Accounting for atmospheric stability conditions in urban heat island studies: the case of Glasgow, UK, Landscape Urban Plann., 117, 112, 10.1016/j.landurbplan.2013.04.019
Lee, 2017, Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data, Atmos. Meas. Tech., 10, 1859, 10.5194/amt-10-1859-2017
Li, 2013, Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest, GISci. Remote Sens., 50, 361, 10.1080/15481603.2013.819161
Li, 2004, Urban heat island effect on annual mean temperature during the last 50 years in China, Theor. Appl. Climatol., 79, 165, 10.1007/s00704-004-0065-4
Li, 2013, Satellite-derived land surface temperature: current status and perspectives, Remote Sens. Environ., 131, 14, 10.1016/j.rse.2012.12.008
Liu, 2011, Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis, Environ. Health, 10, 51, 10.1186/1476-069X-10-51
Lu, 2014, Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data, Landscape Urban Plann., 130, 134, 10.1016/j.landurbplan.2014.07.005
Marquaridt, 1970, Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation, Technometrics, 12, 591, 10.1080/00401706.1970.10488699
McCutchan, 1986, Effect of elevation and aspect on wind, temperature and humidity, J. Climate Appl. Meteorol., 25, 1996, 10.1175/1520-0450(1986)025<1996:EOEAAO>2.0.CO;2
Moser, 2015, Estimation of air surface temperature from remote sensing images and pixelwise modeling of the estimation uncertainty through support vector machines, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 332, 10.1109/JSTARS.2014.2361862
Murray, 2009, Methods to quantify variable importance: implications for the analysis of noisy ecological data, Ecology, 90, 348, 10.1890/07-1929.1
Naidoo, 2012, Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment, ISPRS J. Photogramm. Remote Sens., 69, 167, 10.1016/j.isprsjprs.2012.03.005
Nemani, 1989, Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data, J. Appl. Meteorol., 28, 276, 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
Noi, 2017, Comparison of multiple linear regression, cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data, Remote Sens., 9, 398, 10.3390/rs9050398
Oke, 2002
Park, 2016, Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions, Agric. For. Meteorol., 216, 157, 10.1016/j.agrformet.2015.10.011
Piyoosh, 2017, Semi-automatic mapping of anthropogenic impervious surfaces in an urban/suburban area using Landsat 8 satellite data, GISci. Remote Sens., 54, 471, 10.1080/15481603.2017.1282414
Pokhrel, 2011, Estimation of the effective zone of sea/land breeze in a coastal area, Atmos. Pollut. Res., 2, 106, 10.5094/APR.2011.013
Price, 1980, The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation, Water Resour. Res., 16, 787, 10.1029/WR016i004p00787
Prihodko, 1997, Estimation of air temperature from remotely sensed surface observations, Remote Sens. Environ., 60, 335, 10.1016/S0034-4257(96)00216-7
Rhee, 2014, Relationship between land cover patterns and surface temperature in urban areas, GISci. Remote Sens., 51, 521, 10.1080/15481603.2014.964455
Richardson, 2017, A comparison of geographic datasets and field measurements to model soil carbon using random forests and stepwise regressions (British Columbia, Canada), GISci. Remote Sens., 54, 573, 10.1080/15481603.2017.1302181
Rodriguez-Galiano, 2012, An assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens., 67, 93, 10.1016/j.isprsjprs.2011.11.002
Romero-Lankao, 2012, Urban vulnerability to temperature-related hazards: a meta-analysis and meta-knowledge approach, Global Environ. Change, 22, 670, 10.1016/j.gloenvcha.2012.04.002
Sandholt, 2002, A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status, Remote Sens. Environ., 79, 213, 10.1016/S0034-4257(01)00274-7
Schuster, 2014, Heat mortality in Berlin-Spatial variability at the neighborhood scale, Urban Clim., 10, 134, 10.1016/j.uclim.2014.10.008
Shahmohamadi, 2011, The impact of anthropogenic heat on formation of urban heat island and energy consumption balance, Urban Studies Research 2011, 10.1155/2011/497524
Shi, 2016, Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: a statistical modeling study, Environ. Res., 146, 51, 10.1016/j.envres.2015.12.006
Simpson, 1994
Smith, 1979, The influence of mountains on the atmosphere, Adv. Geophys., 21, 87, 10.1016/S0065-2687(08)60262-9
Song, 2018, Examining human heat stress with remote sensing technology, GISci. Remote Sens., 55, 19, 10.1080/15481603.2017.1354804
Sonobe, 2017, Assessing the suitability of data from Sentinel-1A and 2A for crop classification, GISci. Remote Sens., 54, 918, 10.1080/15481603.2017.1351149
Stisen, 2007, Estimation of diurnal air temperature using MSG SEVIRI data in West Africa, Remote Sens. Environ., 110, 262, 10.1016/j.rse.2007.02.025
Stoll, 1992, Surface-air temperature relationships in the urban environment of Phoenix, Arizona, Phys. Geogr., 13, 160, 10.1080/02723646.1992.10642451
Strobl, 2007, Bias in random forest variable importance measures: Illustrations, sources and a solution, BMC Bioinf., 8, 25, 10.1186/1471-2105-8-25
Sun, 2005, Air temperature retrieval from remote sensing data based on thermodynamics, Theor. Appl. Climatol., 80, 37, 10.1007/s00704-004-0079-y
Vancutsem, 2010, Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa, Remote Sens. Environ., 114, 449, 10.1016/j.rse.2009.10.002
Vogt, 1997, Mapping regional air temperature fields using satellite-derived surface skin temperatures, Int. J. Climatol., 17, 1559, 10.1002/(SICI)1097-0088(19971130)17:14<1559::AID-JOC211>3.0.CO;2-5
Voogt, 2003, Thermal remote sensing of urban climates, Remote Sens. Environ., 86, 370, 10.1016/S0034-4257(03)00079-8
Wan, 1996, A generalized split-window algorithm for retrieving land-surface temperature from space, IEEE Trans. Geosci. Remote Sens., 34, 892, 10.1109/36.508406
Weng, 2009, Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends, ISPRS J. Photogramm. Remote Sens., 64, 335, 10.1016/j.isprsjprs.2009.03.007
Xu, 2014, Estimating daily maximum air temperature from MODIS in British Columbia, Canada, Int. J. Remote Sens., 35, 8108, 10.1080/01431161.2014.978957
Xu, 2012, Study on the estimation of near-surface air temperature from MODIS data by statistical methods, Int. J. Remote Sens., 33, 7629, 10.1080/01431161.2012.701351
Yan, 2009, Estimation of air temperature from MODIS data in east China, Int. J. Remote Sens., 30, 6261, 10.1080/01431160902842375
Yang, 2017, Evaluation of MODIS land surface temperature data to estimate near-surface air temperature in Northeast China, Remote Sens., 9, 410, 10.3390/rs9050410
Yoo, 2012, Variable selection for hedonic model using machine learning approaches: a case study in Onondaga County, NY, Landscape Urban Plann., 107, 293, 10.1016/j.landurbplan.2012.06.009
Yu, 2014, A multi-resolution global land cover dataset through multisource data aggregation, Sci. China Earth Sci., 57, 2317, 10.1007/s11430-014-4919-z
Zeng, 2015, Estimation of daily air temperature based on MODIS land surface temperature products over the corn belt in the US, Remote Sens., 7, 951, 10.3390/rs70100951
Zhang, 2016, Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data, J. Geophys. Res.: Atmos., 121, 10.1002/2016JD025154
Zhang, 2017, An evaluation of monthly impervious surface dynamics by fusing Landsat and MODIS time series in the Pearl River Delta, China, from 2000 to 2015, Remote Sens. Environ., 201, 99, 10.1016/j.rse.2017.08.036
Zhang, 2015, A remote sensing method for estimating surface air temperature and surface vapor pressure on a regional scale, Remote Sens., 7, 6005, 10.3390/rs70506005
Zhu, 2013, Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products, Remote Sens. Environ., 130, 62, 10.1016/j.rse.2012.10.034
Zhang, 2018, A temperature and vegetation adjusted NTL urban index for urban area mapping and analysis, ISPRS J. Photogramm. Remote Sens., 135, 93, 10.1016/j.isprsjprs.2017.11.016