Estimation of biomass in wheat using random forest regression algorithm and remote sensing data

The Crop Journal - Tập 4 - Trang 212-219 - 2016
Li'ai Wang1, Xudong Zhou2, Xinkai Zhu1, Zhaodi Dong1, Wenshan Guo1
1Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
2Information Engineering College of Yangzhou University, Yangzhou 225009, China

Tài liệu tham khảo

Kross, 2015, Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops, Int. J. Appl. Earth Obs. Geoinf., 34, 235, 10.1016/j.jag.2014.08.002 Fu, 2014, Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements, Comput. Electron. Argic., 100, 51, 10.1016/j.compag.2013.10.010 Gnyp, 2014, Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages, Field Crops Res., 155, 42, 10.1016/j.fcr.2013.09.023 Gao, 2013, Estimating the leaf area index, height and biomass of maize using HJ-1 and RADARSAT-2, Int. J. Appl. Earth Obs. Geoinf., 24, 1, 10.1016/j.jag.2013.02.002 Jin, 2015, Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data, Remote Sens., 7, 13251, 10.3390/rs71013251 Gleason, 2012, Forest biomass estimation from airborne LiDAR data using machine learning approaches, Remote Sens. Environ., 125, 80, 10.1016/j.rse.2012.07.006 Montes, 2011, High-throughput non-destructive biomass determination during early plant development in maize under field conditions, Field Crops Res., 121, 268, 10.1016/j.fcr.2010.12.017 Prasad, 2012, Retrieval of spinach crop parameters by microwave remote sensing with back propagation artificial neural networks: a comparison of different transfer functions, Adv. Space Res., 50, 363, 10.1016/j.asr.2012.04.010 Wang, 2008, ANN-based wheat biomass estimation using canopy hyperspectral vegetation indices, Trans. CSAE, 24, 196 Clevers, 2007, Estimating grassland biomass using SVM band shaving of hyperspectral data, Photogramm. Eng. Remote. Sens., 73, 1141, 10.14358/PERS.73.10.1141 Jin, 2013, Estimation of wheat agronomic parameters using new spectral indices, PLoS One, 8, 10.1371/journal.pone.0072736 Jhonnerie, 2015, Random forest classification for mangrove land cover mapping using Landsat5 TM and ALOS PALSAR imageries, Procedia Environ. Sci., 24, 215, 10.1016/j.proenv.2015.03.028 Nitze, 2015, Temporal optimization of image acquisition for land cover classification with random forest and MODIS time-series, Int. J. Appl. Earth Obs. Geoinf., 34, 136, 10.1016/j.jag.2014.08.001 Gislason, 2006, Random forests for land cover classification, Pattern Recogn. Lett., 27, 294, 10.1016/j.patrec.2005.08.011 Puissant, 2014, Object-oriented mapping of urban trees using random forest classifiers, Int. J. Appl. Earth Obs. Geoinf., 26, 235, 10.1016/j.jag.2013.07.002 Booker, 2012, Comparing methods for estimating flow duration curves at ungauged sites, J. Hydrol., 434, 78, 10.1016/j.jhydrol.2012.02.031 Liu, 2015, Multivariable integration method for estimating sea surface salinity in coastal waters from in situ data and remotely sensed data using random forest algorithm, Comput. Geosci., 75, 44, 10.1016/j.cageo.2014.10.016 Mutanga, 2014, High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm, Int. J. Appl. Earth Obs. Geoinf., 18, 399, 10.1016/j.jag.2012.03.012 Rouse, 1974 Huete, 1998, A soil vegetation adjusted index (SAVI), Remote Sens. Environ., 25, 295, 10.1016/0034-4257(88)90106-X Rondeaux, 1996, Optimization of soil-adjusted vegetation indices, Remote Sens. Environ., 55, 95, 10.1016/0034-4257(95)00186-7 Schleicher, 2001 Gitelson, 1996, Use of a green channel in remote sensing of global vegetation from EOS-MODIS, Remote Sens. Environ., 58, 289, 10.1016/S0034-4257(96)00072-7 Penuelas, 1995, Assessment of photosynthetic radiation-use efficiency with spectral reflectance, New Phytol., 131, 291, 10.1111/j.1469-8137.1995.tb03064.x Merzlyak, 1999, Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening, Physiol. Plant., 106, 135, 10.1034/j.1399-3054.1999.106119.x Baret, 1991, Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sens. Environ., 35, 161, 10.1016/0034-4257(91)90009-U Gitelson, 2002, Assessing carotenoid content in plant leaves with reflectance spectroscopy, Photochem. Photobiol., 75, 272, 10.1562/0031-8655(2002)075<0272:ACCIPL>2.0.CO;2 Liu, 1995, A feedback based modification of the NDVI to minimize canopy background and atmospheric noise, IEEE Trans. Geosci. Remote Sens., 33, 457, 10.1109/36.377946 Chen, 1996, Evaluation of vegetation indices and modified simple ratio for boreal applications, Can. J. Remote. Sens., 22, 229, 10.1080/07038992.1996.10855178 Goel, 1994, Influences of canopy architecture on relationships between various vegetation indexes and LAI and FPAR: a computer simulation, Remote Sens. Environ., 10, 309, 10.1080/02757259409532252 Wang, 1998, Effects of nitrogen nutrition on the spectral reflectance characteristics of rice leaf and canopy, J. Zhejiang Agric. Univ., 24, 93 Broge, 2000, Comparing prediction power and stability of broad band and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density, Remote Sens. Environ., 76, 156, 10.1016/S0034-4257(00)00197-8 Haboudane, 2004, Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture, Remote Sens. Environ., 90, 337, 10.1016/j.rse.2003.12.013 Breiman, 1984 Quinlan, 1993 Rodriguez-Galiano, 2014, Predictive modeling of groundwater nitrate pollution using random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (southern Spain), Sci. Total Environ., 476–477, 189, 10.1016/j.scitotenv.2014.01.001 Prasad, 2006, Newer classification and regression tree techniques bagging and random forests for ecological prediction, Ecosystems, 9, 181, 10.1007/s10021-005-0054-1 Huete, 2002, Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195, 10.1016/S0034-4257(02)00096-2 Li, 2010, Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages, Precis. Agric., 11, 335, 10.1007/s11119-010-9165-6 Li, 2012, Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany, Field Crops Res., 138, 21, 10.1016/j.fcr.2012.09.002 Hatfield, 2010, Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices, Remote Sens., 2, 562, 10.3390/rs2020562 Vapnik, 1995 Haykin, 1999 Verrelst, 2012, Machine learning regression algorithms for biophysical parameter retrieval: opportunities for Sentinel-2 and -3, Remote Sens. Environ., 118, 127, 10.1016/j.rse.2011.11.002 Baret, 2008, Estimating canopy characteristics from remote sensing observations: review of methods and associated problems, 173 Cutler, 2007, Random forests for classification in ecology, Ecology, 88, 2783, 10.1890/07-0539.1 Fukuda, 2014, Modelling the relationship between peel colour and the quality of fresh mango fruit using random forests, J. Food Eng., 131, 7, 10.1016/j.jfoodeng.2014.01.007 Bendig, 2015, Combining UAV-based plant height from crop surface models, visible and near infrared vegetation indices for biomass monitoring in barley, Int. J. Appl. Earth Obs. Geoinf., 39, 79, 10.1016/j.jag.2015.02.012 Prabhakara, 2015, Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in maryland, United States, Int. J. Appl. Earth Obs. Geoinf., 39, 88, 10.1016/j.jag.2015.03.002 Jin, 2012, Comparison of two methods for estimation of leaf total chlorophyll content using remote sensing in wheat, Field Crops Res., 135, 24, 10.1016/j.fcr.2012.06.017 Monteiro, 2012, Assessing biophysical variable parameters of bean crops with hyperspectral measurements, Sci. Agric., 69, 87, 10.1590/S0103-90162012000200001 Hansen, 2003, Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression, Remote Sens. Environ., 86, 542, 10.1016/S0034-4257(03)00131-7 Li, 2012, Retrieving LAI of winter wheat based on sensitive vegetation index by the segmentation method, Sci. Agric. Sin., 45, 3486 Boegh, 2013, Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop and grasslands in five European landscapes, Biogeosciences, 10, 6279, 10.5194/bg-10-6279-2013 Eitel, 2014, LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status, Field Crops Res., 159, 21, 10.1016/j.fcr.2014.01.008