Estimation of Sulfide Capacity of Slags Using Ionic Theory
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bigeev, A.M. and Bigeev V.A., Bigeev, A.M. and Bigeev, V.A., Metallurgiya stali. Teoriya i tekhnologya plavki stali (Metallurgy of Steel: Theory and Technology of Steel Smelting.), Magnitogorsk: Magnitogorsk. Gos. Tekh. Univ., 2000.
Yavoiskii, V.I., Kryakovskii, Yu.V., Grigor’ev, V.P., Nechkin, Yu.M., Kravchenko, V.F., and Borodin, D.I., Metallurgiya stali (Steel Metallurgy), Moscow: Metallurgiya, 1983.
von Knüppel, H., Desoxydation und Vakuumbehandlung von Stahlschmelzen Vol. 2: Grundlagen und Verfahren der Pfannenmetallurgie, Düsseldorf: Verlag Stahleisen, 1983.
Fandrich, R., Lüngen, H.B., and Wuppermann, C.D., Actual review on secondary metallurgy, Metall. Res. Technol., 2008, vol. 105, nos. 7–8, pp. 364–374. https://doi.org/10.1051/metal:2008053
Fandrich, R., Lüngen, H.B., and Wuppermann, C.D., Secondary metallurgy—State of the art and research trends in Germany, Stahl Eisen, 2008, vol. 128, no. 2, pp. 45–53.
Turkdogan, E.T., Ladle deoxidation, desulphurisation and inclusions in steel—Part 1: Fundamentals, Arch. Eisenhuttenwes., 1983, vol. 54, no. 1, pp. 1–10. https://doi.org/10.1002/srin.19830519
Pluschkell, W., Metallurgical reaction techniques for adjusting very low contents of C, P, S and N in steel, Stahl Eisen, 1990, vol. 110, no. 5, pp. 61–70.
Jonsson, L., Sichen, D., and Jönsson, P., A new approach to model sulphur refining in a gas-stirred ladle—a coupled CFD and thermodynamic model, ISIJ Int., 1998, vol. 38, no. 3, pp. 260–267. https://doi.org/10.2355/isijinternational.38.260
Cao, Q., Pitts, A., and Nastac, L., Numerical modeling of fluid flow and desulphurisation kinetics in an argon-stirred ladle furnace, Ironmaking Steelmaking, 2018, vol. 45, no. 3, pp. 280–287. https://doi.org/10.1080/03019233.2016.1262574
Chang, S., Wu, L., Guo, J., Pan, Y., and He, F., Industrial investigation of decarburization and desulphurization behavior of 120 t new single snorkel degasser, Ironmaking Steelmaking, 2020, vol. 47, no. 7, pp. 713–721. https://doi.org/10.1080/03019233.2019. 1580029
Agapitov, E.B., Lemeshko, M.A., and Sokolova, M.S., Prospects for the use of hollow electrodes for deep desulfurization of steel in the ladle-furnace unit, Mater. Sci. Forum, 2020, vol. 989, pp. 474–479. https://doi.org/10.4028/www.scientific.net/MSF.989.474
Komolova, O.A. and Grigorovich, K.V., Development of LF-software for modeling of refining processes in a ladle-furnace, J. Phys.: Conf. Ser., 2019, vol. 1347, no. 1, art. ID 012066. https://doi.org/10.1088/1742-6596/1347/1/012066
Lin, L., Hou, Z.-X., Bao, Y.-P., Wu, Y.-X., Zhang, L.-Q., and Zeng, J.-Q., Gasification desulfurization and resource utilization of ladle furnace refining slag, Chin. J. Eng., 2018, vol. 40, pp. 154–160. https://doi.org/10.13374/j.issn2095-9389.2018.s1.022
Socha, L., Hudzieczek, Z., Michalek, K., Pilka, V., and Piegza, Z., Verification of physical modelling of steel desulphurization in the plant conditions of the homogenization station, Proc. 23rd Int. Conf. on Metallurgy and Materials “METAL-2014,” Brno, 2014, pp. 64–71.
Socha, L., Bažan, J., Gryc, K., Morávka, J., Styrnal, P., Pilka, V., and Piegza, Z., Optimization of the slag mode in the ladle during the steel processing of secondary metallurgy, Mater. Tehnol., 2013, vol. 47, no. 5, pp. 673–678.
Puţan, A., Hepuţ, T., Vilceanu, L., and Puţan, V., Research on desulphurization of steel with calcium aluminate synthetic slag with addition of titanium oxide, Proc. 4th Int. Conf. on Manufacturing Engineering, Quality, and Production Systems (MEQAPS’11), Barcelona, 2011, pp. 147–151.
Burmasov, S.P., Gudov, A.G., Yaroshenko, Yu.G., Meling, V.V., and Dresvyankina, L.E., Mass transfer in the ladle refining of steel with gas mixing, Steel Transl., 2015, vol. 45, no. 9, pp. 635–639. https://doi.org/10.3103/S096709121509003X
Popel’, S.I., Sotnikov, A.I., and Boronenkov, V.N., Teoriya metallurgicheskikh protsessov (Theory of Metallurgical Processes), Moscow: Metallurgiya, 1986.
Kazachkov, E.A., Raschety po teorii metallurgicheskikh protsessov (Calculations on the Theory of Metallurgical Processes), Moscow: Metallurgiya, 1988.
Itogi nauki i tekhniki. Teoriya metallurgicheskikh protsessov (The Results of Science and Technology: Theory of Metallurgical Processes), Moscow: Vses. Inst. Nauchn. Tekh. Inf., 1987.
Korovin, V.A., Leushin, O.I., Palavin, R.N., Kolganov, V.N., Cherkasov, S.V., and Kostromin, S.V., Secondary metallurgy and metal quality, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2009, no. 8, pp. 13–15.
Sommerville, I.D., The measurement, prediction and use of capacities of metallurgical slags, Proc. 4th Int. Conf. on Injection Metallurgy “Scaninject IV,” Luleå, Sweden, June 11–13, 1986, Luleå: MEFOS, 1986, pp. 8.1–8.21.
Metelkin, A.A., Sheshukov, O.Yu., Savel’ev, M.V., Shevchenko, O.I., and Egiazar’yan, D.K., Steel desulfurization in a ladle-furnace unit, Materialy Mezhdunarodnoi nauchnoi konferentsii “Fiziko-khimicheskie osnovy metallurgicheskikh protsessov” imeni akademika A.M. Samarina (Proc. Int. Sc. Conf. Named after Academician A.M. Samarin “Physical and Chemical Foundations of Metallurgical Processes”), Moscow: Inst. Metall. Materialoved., Ross. Akad. Nauk, 2019.
Novikov, V.K. and Nevidimov, V.N., Polimernaya priroda rasplavlennykh shlakov (Polymer Nature of Molten Slag), Yekaterinburg: Ural. Gos. Tekh. Univ.–Ural. Politekh. Inst., 2006.
Sheshukov, O.Yu., Mikheenkov, M.A., Nekrasov, I.V., Egiazar’yan, D.K., Metelkin, A.A., and Shevchenko, O.I., Voprosy utilizatsii rafinirovannykh shlakov staleplavil’nogo proizvodstva (Utilization of Refining Slag from Steelmaking Production), Nizhniy Tagil: Nizhnetagil’sk. Tekhnol. Inst., Ural. Fed. Univ., 2017.
Sheshukov, O.Yu., Nekrasov, I.V., Bonar’, S.N., Egiazar’yan, D.K., Tsymbalist, M.M., and Sivtsov, A.V., Sulfide capacity of alumina slag from extra-furnace steel processing and oxygen anions activity, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2017, no. 2, pp. 30–33.