Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ước lượng các tham số elastoplast thông qua FEMU có trọng số và Integrated-DIC
Tóm tắt
Nghiên cứu dựa trên phương pháp DIC để xác định các tham số cấu thành của quy luật elastoplast được đề cập từ góc nhìn tổng quát, và áp dụng cho trường hợp cụ thể của mẫu hình xương chó làm từ titan nguyên chất thương mại và chịu tải kéo. Một quy trình hai bước (Phân tích hình ảnh số - DIC - được theo sau bởi Cập nhật Phương pháp Phần tử Hữu hạn có trọng số - FEMU) được trình bày trước. Hai bước này có thể được kết hợp thành một quy trình một bước (tức là, Integrated-DIC hoặc I-DIC). Trong cả hai trường hợp, các tính toán elastoplast được thực hiện bằng cách sử dụng một phần mềm thương mại (tức là, việc xác định không xâm nhập). Khi việc trọng số phù hợp của FEMU được tính đến, dựa trên độ ồn của hình ảnh được xử lý bằng DIC, cả hai phương pháp I-DIC và FEMU đều cung cấp kết quả tương tự. Nghiên cứu chỉ ra rằng trường hợp thực nghiệm được đề cập yêu cầu sử dụng thông tin tĩnh (tải) để có được ước lượng chính xác cho các tham số cần tìm.
Từ khóa
#DIC #FEMU #elastoplast #titan nguyên chất #tải kéoTài liệu tham khảo
Allix O, Feissel P, Nguyen H (2005) Identification Strategy in the Presence of Corrupted Measurements. Eng Comput 22(5-6):487–504
Amiot F, Hild F, Roger J (2007) Identification of Elastic Property and Loading Fields from Full-Field Displacement Measurements. Int. J. Solids Struct 44:2863–2887
Andrieux S, Abda A B, Bui H (1999) Reciprocity Principle and Crack Identification. Inv Probl 15:59–65
Andrieux S, Bui H, Constantinescu A (2012) Reciprocity Gap Method. In: Grédiac M, Hild F (eds) Full-Field Measurements and Identification in Solid Mechanics. ISTE/Wiley, London, pp 363–378
Avril S, Grédiac M, Pierron F (2004) Sensitivity of the Virtual Fields Method to Noisy Data. Comput Mech 34(6):439–452
Avril S, Bonnet M, Bretelle A, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008a) Overview of Identification Methods of Mechanical Parameters Based on Full-Field Measurements. Exp Mech 48(4):381–402
Avril S, Pierron F, Pannier Y, Rotinat R (2008b) Stress Reconstruction and Constitutive Parameter Identification in Plane-Stress Elasto-Plastic problems Using Surface Measurements of Deformation Fields. Exp Mech 48(4):403–419
Besnard G, Hild F, Roux S (2006) finite-element Displacement Fields Analysis from Digital Images: Application to Portevin-le Chatelier Bands. Exp Mech 46:789-803
Besnard G, Leclerc H, Roux S, Hild F (2012) Analysis of Image Series through Digital Image Correlation. J. Strain Anal 47:214–228
Bonnet M (2012) Introduction to Identification Methods. In: Grédiac M, Hild F (eds) Full-Field Measurements and Identification in Solid Mechanics. Wiley, London, pp 223–246
Bonnet M, Constantinescu A (2005) Inverse Problems in Elasticity. Inv Probl 21:R1–R50
Bouterf A, Roux S, Hild F, Adrien J, Maire E (2014) Digital Volume Correlation Applied to X-ray Tomography Images from Spherical Indentation Tests on Lightweight Gypsum. Submitted for Publication
Boyer R, Welsch G, Collings E W(eds) (1994) Materials Properties Handbook: titanium Alloys, ASM International
Broggiato G (2004) Adaptive Image Correlation Technique for Full-Field Strain Measurement. In: Pappalettere C (ed) 12th Int Conf Exp Mech McGraw Hill, Bari, pp 420–421
Calloch S, Dureisseix D, Hild F (2002) Identification de modèles de comportement de matériaux solides : Utilisation d’essais et de CalculsTechnol Form 100:36–41
Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: the equilibrium gap method. Int J Num Meth Engng 61(2):189–208
Collins J, Hart G, Kennedy B (1974) Statistical identification of structures. AIAA J 12(2):185–190
Conrad H, Jones R (1970) The Science, Technology and Application of Titanium. Pergamon Press, Oxford
Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2007) Elasto-plastic material parameter identification by inverse methods: calculation of the sensitivity matrix. Int J Solids Struct 44(13):4329–4341
Fagerholt E, Børvik T, Hopperstad OS (2013) Measuring discontinuous displacement fields in cracked specimens using digital image correlation with mesh adaptation and crack-path optimization. Opt Lasers Eng 51(3):299–310
Feissel P, Allix O (2007) Modified constitutive relation error identification strategy for transient dynamics with corrupted data: the elastic case. Comput Meth Appl Mech Eng 196(13/16):1968–1983
Geymonat G, Hild F, Pagano S (2002) Identification of elastic parameters by displacement field measurement. C R Mécanique 330:403–408
Gras R, Leclerc H, Roux S, Otin S, Schneider J, Périé J (2013b) Identification of the out-of-plane shear modulus of a 3d woven composite. Exp Mech 53:719–730
Gras R, Leclerc H, Hild F, Roux S, Schneider J (2013) Identification of a set of macroscopic elastic parameters in a 3d woven composite: uncertainty analysis and regularization. Int J Solids Struct. doi:10.1016/j.ijsolstr.2013.12.023
Grédiac M (1989) Principe des travaux virtuels et identification. C R Acad Sci Paris 309 (Série II):1–5
Grédiac M, Hild F(eds) (2012) Full-Field Measurements and Identification in Solid Mechanics, ISTE/Wiley, London
Hamam R, Hild F, Roux S (2007) Stress intensity factor gauging by digital image correlation: application in cyclic fatigue. Strain 43:181–192
Héripré E, Dexet M, Crépin J, Gélébart L, Roos A, Bornert M, Caldemaison D (2007) Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials. Int J Plast 23(9):1512–1539
Hermez F, Farhat C (1993) Updating finite element dynamic models using element-by-element sensitivity methodology. AIAA J 31(9):1702–1711
Hild F, Roux S (2006) Digital image correlation: from measurement to identification of elastic properties - A revision. Strain 42:69–80
Hild F, Roux S (2012a) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519
Hild F, Roux S (2012b) Digital Image Correlation. In: Rastogi P, Hack E (eds) (2012) Optical Methods for Solid Mechanics. A Full-Field Approach. Wiley-VCH, Weinheim, pp 183–228
Kavanagh K (1972) Extension of classical experimental techniques for characterizing the composite-material behavior. Exp Mech 12(1):50–56
Kavanagh K, Clough R (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7:11–23
Kim J-H, Serpantié A, Barlat F, Pierron F, Lee M-G (2013) Characterization of the post-necking strain hardening behavior using the virtual fields method. Int J Solids Struct 50:3829–3842
Leclerc H, Périé J, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties, LNCS, vol 5496. Springer, Berlin, pp 161–171
Lecompte D, Smits A, Sol H, Vantomme J, Hemelrijck D (2007) Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens. Int J Solids Struct 44(5):1643–1656
Mathieu F, Hild F, Roux S (2012) Identification of a crack propagation law by digital image correlation. Int J Fat 36:146–154
Mathieu F, Aimedieu P, Guimard J, Hild F (2013a) Identication of interlaminar fracture properties of a composite laminate using local full-field kinematic measurements and finite element simulations. Comp Part A 49:203–213
Mathieu F, Hild F, Roux S (2013b) Image-based identification procedure of a crack propagation law. Eng Fract Mech 103:48–59
Passieux J C, Périé J N (2012) Digital image correlation using proper generalized decomposition: PGD-DIC. Int J Num Meth Eng 92:531–550
Pagnacco E, Caro-Bretelle A, Ienny P (2012) Parameter Identification from Mechanical Field Measurements using Finite Element Model Updating Strategies. In: Grédiac M, Hild F (eds) (2012) Full-Field Measurements and Identification in Solid Mechanics. ISTE/Wiley, London, pp 247–274
Pierron F, Grédiac M (2012) The Virtual Fields Method. Springer
Pottier T, Toussaint F, Vacher P (2011) Contribution of heterogeneous strain field measurements and boundary conditions modelling in inverse identification of material parameters. Eur J Mech A/Solids 30(3):373–382
Ramberg W, Osgood W R (1943) Description of stress-strain curves by three parameters. Tech rep., National Advisory Committee For Aeronautics, Washington DC (USA)
Réthoré J (2010) A fully integrated noise robust strategy for the identification of constitutive laws from digital images. Int J Num Meth Eng 84(6):631–660
Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140(1-4):141–157
Roux S, Hild F (2008) Digital image mechanical identification (DIMI). Exp Mech 48(4):495–508
Simoncelli E P (1999) Bayesian Multi-Scale Differential Optical Flow. In: Jähne B, Haussecker H, Geissler P (eds) Handbook of Computer Vision and Applications, vol 2. Academic Press, pp 297–422
Simulia (2009) Abaqus Analysis User’s Manual, 19.1.1. Inelastic behavior. Dassault Systèmes, Providence, RI (USA)
Sun Y, Pang J, Wong C, Su F (2005) Finite-element formulation for a digital image correlation method. Appl Optics 44(34):7357–7363
Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications. Springer, New York
Tarigopula V, Hopperstad O, Langseth M, Clausen A, Hild F (2008a) A study of localisation in dual phase high-strength steels under dynamic loading using digital image correlation and fe analysis. Int J Solids Struct 45(2):601–619
Tarigopula V, Hopperstad O, Langseth M, Clausen A, Hild F, Lademo O, Eriksson M (2008b) A study of large plastic deformations in dual phase steel using digital image correlation and fe analysis. Exp Mech 48(2):181–196
Tomicevic Z, Hild F, Roux S (2013) Mechanics-aided digital image correlation. J Strain Anal 48:330–343