Estimation of Cardiac Bidomain Parameters from Extracellular Measurement: Two Dimensional Study
Tóm tắt
Cardiac tissue conductivity measurements can be used to assess the electrical substrate underlying normal and abnormal wavefront propagation. We describe a method of solving the inverse cardiac bidomain model to estimate average longitudinal and transverse intra and extra-cellular conductivities and fiber angle relative to an electrode array placed arbitrarily on the epi- or endocardial surface. A Newton–Raphson reconstruction method and two Tikhonov-type regularizations were able to stably identify conductivities and fiber angles in tissue models having anisotropies similar to those in real cardiac tissue. The reconstruction methods were tested with data from increasingly realistic two dimensional cardiac bidomain models and performed well both when measurement noise was added, and when simulated experimental and forward model matching was diminished. This approach may be a suitable basis for continuous monitoring of myocardial condition in-vivo via a catheter based electrode array.
Tài liệu tham khảo
Abascal, J. F. P. J., and W. R. B. Lionheart. Rank analysis of the anisotropic inverse conductivity problem, Proc. XII ICEBI - V EIT 2004, Gdansk, Poland 20–24 June 2004, 2:511–514, 2004.
Barr, R. C., and R. Plonsey. Electrode systems for measuring cardiac impedances using optical transmembrane potential sensors and interstitial electrodes – theoretical design. IEEE Trans. Biomed. Eng. 50:925–934, 2003.
Boone, K., D. Barber, and B. Brown. Review Imaging with electricity: Report of the European concerted action on impedance tomography. J. Med. Eng. Tech. 21:201–232, 1997.
Brown, B. H. Medical impedance tomography and process impedance tomography: A brief review. Meas. Sci. Technol. 12:991–996, 2001.
Cheney, M., D. Isaacson, J. C. Newell, S. Simske, J. Goble. NOSER: An algorithm for Solving the inverse conductivity problem. Int. J. Im. Syst. Tech. 2:66–75, 1990.
Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255:335–346, 1976.
Colli-Franzone, P., L. Guerrie, and B. Taccardi. Spread of excitation in a myocardial volume: simulation studies in a model of anisotropic ventricular muscle activated by point stimulation. J. Cardiovasc. Electrophysiol. 4:144–160, 1993.
Dines, K. A., and R. J. Lytle. Analysis of electrical conductivity imaging Geophysics 46:1025–1036, 1981.
Geselowitz, D. B. An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng. BME-18:38–41, 1971.
Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21:1–77, 1993.
Jack, J. J. B., D. Noble, and R. W. Tsien. Electric Current Flow in Excitable Cells. Oxford: Clarendon University Press, 1975.
Lee, J. M., and G. Uhlmann. Determining anisotropic real-analytic conductivities by boundary measurements. Comm. Pure Appl. Math. 42:1097–1112, 1989.
LeGuyader, P., F. Trelles, and P. Savard. Extracellular measurement of anisotropic bidomain myocardial conductivities. I. Theoretical analysis. Ann. Biomed. Eng. 29:862–877, 2001.
Lionheart, W. R. B. Conformal uniqueness results in anisotropic electrical impedance imaging. Inv. Prob. 13:125–134, 1997.
Muzikant, A. L., and C. S. Henriquez. Bipolar stimulation of a three- dimensional bidomain incorporating rotational anisotropy. IEEE Trans. Biomed. Eng. 45:449–462, 1998.
Plonsey, R., and R. Barr. The four-electrode resistivity technique as applied to cardiac muscle. IEEE Trans. Biomed. Eng. BME-29:541–546, 1982.
Plonsey, R., and R. C. Barr. A critique of impedance measurements in cardiac tissue. Ann. Biomed. Eng. 14:307–322, 1986.
Pollard, A. E., W. M. Smith, and R. C. Barr. Feasibility of cardiac microimpedance measurement using multisite interstitial stimulation. Am. J. Physiol. Heart Circ. Physiol. 287:2402–2411, 2004.
Pormann, J. B. A simulation system for the bidomain equations, Ph.D. Dissertation, Duke University, Durham NC, 1999.
Roberts, D. E., L. T. Hersh, and A. M. Scher. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity and tissue resistivity in the dog. Circ. Res. 44:701–712, 1979.
Roberts, D. E., and A. M. Scher. Effect of Tissue Anisotropy on extracellular potential fields in canine myocardium in situ. Circ. Res. 50:342–351, 1982.
Roth, B. J. Approximate analytical solutions to the bidomain equations with unequal anisotropy ratios. Phys. Rev. E 55:1819–1826, 1997.
Roth, B. J. Electrical Conductivity values used with the bidomain model of cardiac tissue IEEE Trans. Biomed. Eng. 44:326–328, 1997.
Rush, S., J. A. Abildskov, and R. McFee. Resistivity of body tissues at low frequencies. Circ. Res. 12:40–50, 1963.
Seagar, A. D., D. C. Barber, and B. H. Brown. Theoretical limits to sensitivity and resolution in impedance imaging. Clin. Phys. Physiol. Meas. 8A:13–31, 1987.
Steendijk, P., G. Mur, E. T. van der Velde, and J. Baan. The four-electrode resistivity technique in anisotropic media: theoretical analysis and application on myocardial tissue in vivo. IEEE Trans. Biomed. Eng. 40:1138–1148, 1993.
Steendijk, P., E. T. van der Velde, and J. Baan. Dependence of anisotropic myocardial electrical resistivity on cardiac phase and excitation frequency. Basic Res. Cardiol 89:411–426, 1994.
Taylor, D. A. Cellular cardiomyoplasty with autologous skeletal myoblasts for ischemic heart disease and heart failure. Curr. Controlled Clin. Trials Cardiovasc. Med. 2:208–210, 2001.
Taylor, D. A., B. Z. Atkins, P. Hungspreugs, T. R. Jones, M. C. Reedy, K. A. Hutcheson, D. D. Glower, and W. E. Kraus. Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat. Med. 4:929–933 1998.
Tsai, J. Z., J. A. Will, S. Hubbard-van Stelle, H. Cao, S. Tungjitkusolmun, Y. B. Choy, D. Haemmerich, V. R. Vorperian, and J. G. Webster. In-vivo measurement of swine myocardial resistivity. IEEE Trans. Biomed. Eng. 49:472–483, 2002.
Tsai, J. Z., J. A. Will, V. R. Vorperian, S. Hubbard-van Stelle, S. Tungjitkusolmun, Y. B. Choy, and J. G. Webster. In vitro measurement of myocardial impedivity anisotropy with a miniature rectangular tube. IEEE Trans. Biomed. Eng. 50:528–532, 2003.
Uhlmann, G. Recent progress in the anisotropic electrical impedance problem. Electron. J. Diff. Eqns., Conf 06, 2001:303–311, 2001.
Vauhkonen, M., D. Vadasz, P. A. Karjalainen, E. Somersalo, and J. P. Kaipio. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. Med. Im. 17:285–293, 1998.
Yorkey, T. J., J. G. Webster, and W. J. Tompkins. Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng. BME-34:843–852, 1987.
Zhu, E. W., and C. S. Henriquez. Myocardial fiber orientation mapping using reduced encoding diffusion tensor imaging. J. Cardiovasc. Magn. Res. 3:339–347, 2001.
Zhukov, L., and A. H. Barr. Heart-muscle fiber reconstruction from diffusion tensor MRI. Proc. IEEE Visualization 2003 (VIS'03), vol. 2003:597–602, 2003.