Ước lượng phương sai của trung bình mẫu trong lấy mẫu hệ thống hai chiều

Marcello D’Orazio1
1Department for Technical Standards, Italian National Statistical Institute (ISTAT), Rome, Italy

Tóm tắt

Bài báo này nghiên cứu vấn đề ước lượng sai số lấy mẫu khi trung bình (tổng) của quần thể được ước lượng từ một mẫu có kế hoạch hai chiều. Cụ thể, các phần mở rộng hai chiều của các ước lượng phương sai gần đúng đã biết được sử dụng trong lấy mẫu hệ thống tuyến tính được giới thiệu. Những ước lượng phương sai gần như mới này có lợi thế là xem xét thứ tự không gian của các đơn vị mẫu và do đó, sự tự tương quan không gian giữa chúng. Một cuộc điều tra về các thuộc tính của chúng được thực hiện thông qua một loạt các mô phỏng và một nghiên cứu thực nghiệm.

Từ khóa

#phương sai #trung bình mẫu #lấy mẫu hệ thống hai chiều #sai số lấy mẫu #tự tương quan không gian

Tài liệu tham khảo

Anderson, J. R., Hardy, E. E., Roach, J. T., and Witmer, R. E. (1976), “A Land Use and Land Cover Classification System for Use With Remote Sensor Data,” Professional Paper 28, U.S. Geological Survey, Reston, VA. Bellhouse, D. R. (1977), “Optimal Designs for Sampling in Two Dimensions,” Biometrika, 64, 605–611. — (1981), “Spatial Sampling in Presence of a Trend,” Journal of Statistical Planning and Inference, 5, 365–375. — (1988), “Systematic Sampling,” in Handbook of Statistics, (vol. 6), eds. P. R. Krishnaiah and C. R. Rao, Amsterdam: Elsevier, pp. 125–145. Booth, J. G., Butler, R. W., and Hall, P. (1994), “Bootstrap Methods for Finite Populations,” Journal of the American Statistical Association, 89, 1282–1289. Cliff, A. D., and Ord, J. K. (1981), Spatial Processes: Models and Applications, New York: Wiley. Cochran, W. G. (1946), “Relative Accuracy of Systematic and Random Samples for a Certain Class of Populations,” The Annals of Mathematical Statistics, 17, 164–177. — (1977), Sampling Techniques (3rd ed.), New York: Wiley. Cressie, N. A. C. (1993), Statistics for Spatial Data (revised ed.), New York: Wiley. Das, A. C. (1950), “Two Dimensional Systematic Sampling and the Associated Stratified Random Sampling,” Sankhya, 10, 95–108. DOI, USGS (1986), “Land Use and Land Cover Digital Data from 1∶250,000 and 1∶100,000-scale Maps,” Data User Guide (vol. 4), Reston, VA: U.S. Geological Survey. D’Orazio, M. (1997), “A Sequential Sampling Procedure for Clusters of Territorial Units,” Metron, 55, 73–91. D’Orazio, M. (1999), “Some Estimator of Variance for Adaptive Cluster Sampling Based on a Single-Start Systematic Sample” (Italian), in Proceedings of the Italian Statistical Society (April 1998), vol. 2, pp. 431–438. Dunn, R., and Harrison, A. R. (1993), “Two-Dimensional Systematic Sampling of Land Use,” Applied Statistics, 42, 585–601. Durbin, J., and Watson, G. S. (1950), “Testing for Serial Correlation in Least Squares Regression,” Biometrika, 37, 409–428. Garcia-Soidan, P. H., and Hall, P. (1997), “On Sample Reuse Methods for Spatial Data,” Biometrics, 53, 273–281. Gilbert, R. O. (1987), Statistical Methods for Environmental Pollution Monitoring, New York: Van Nostrand Reinhold. Iachan, R. (1982), “Systematic Sampling: A Critical Review,” International Statistical Review, 50, 293–303. — (1985), “Plane Sampling,” Statistics and Probability Letters, 3, 151–159. Jacobsen, J. S. (1998), “Soil Sampling,” MT8602AG, Montana State University Extension Publications. Koop, J. C. (1971), “On Splitting a Systematic Sample for Variance Estimation,” The Annals of Mathematical Statistics, 42, 1084–1087. Manson, B. J. (1992), “Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies,” EPA/600/R-92/128, U.S. Environmental Protection Agency. Matérn, B. (1960), “Spatial Variation,” Meddelanden fran Statens Skogsforsknings Institut, 49, 1–144; second edition (1986), Lecture Notes in Statistics, 36, New York: Springer. McArthur, R. D. (1987), “An Evaluation of Sample Designs for Estimating a Locally Concentrated Pollutant,” Communications in Statistics—Simulations and Computing, 16, 735–759. Murthy, M. N., and Rao, T. J. (1988), “Systematic Sampling with Illustrative Examples,” in Handbook of Statistics (Vol. 6), eds. P. R. Krishnaiah and C. R. Rao, Amsterdam: Elsevier, pp. 147–185. NRC (2000), “Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)” (Revision 1), NUREG-1575 Rev. 1, EPA 402-R-97-016 Rev. 1, DOE/EH-0624 Rev. 1. Payandeh, B. (1970), “Relative Efficiency of Two-Dimensional Systematic Sampling,” Forest Science, 16, 271–276. Quenouille, M. H. (1949), “Problems in Plane Sampling,” The Annals of Mathematical Statistics, 20, 355–375. Ripley, B. D. (1981), Spatial Statistics, New York: Wiley. Schlather, M. (2001), “Simulation and Analysis of Random Fields,” R News, 1, 18–20. Tomppo, E., and Heikkinen, J. (1999), “National Forest Inventory of Finland—Past, Present and Future,” in Statistics, Registries, and Science—Experiences from Finland, ed. J. Alho, Helsinki: Statistics Finland, pp. 89–108. Whittle, P. (1954), “On Stationary Processes in the Plane,” Biometrika, 41, 434–449. Wolter, K. M. (1984), “An Investigation of Some Estimators of Variance for Systematic Sampling,” Journal of the American Statistical Association, 79, 781–790. — (1985), Introduction to Variance Estimation, New York: Springer-Verlag. Yates, F. (1981), Sampling Methods for Censuses and Surveys (4th ed.), New York: MacMillan. Zubrzycki, S. (1958), “Remarks on Random, Stratified and Systematic Sampling in a Plane,” Colloquium Mathematicum, 6, 251–264.