Estimating the under-reporting of norovirus illness in Germany utilizing enhanced awareness of diarrhoea during a large outbreak of Shiga toxin-producing E. coli O104:H4 in 2011 – a time series analysis
Tóm tắt
Laboratory-confirmed norovirus illness is reportable in Germany since 2001. Reported case numbers are known to be undercounts, and a valid estimate of the actual incidence in Germany does not exist. An increase of reported norovirus illness was observed simultaneously to a large outbreak of Shiga toxin-producing E. coli O104:H4 in Germany in 2011 – likely due to enhanced (but not complete) awareness of diarrhoea at that time. We aimed at estimating age- and sex-specific factors of that excess, which should be interpretable as (minimal) under-reporting factors of norovirus illness in Germany. We used national reporting data on laboratory-confirmed norovirus illness in Germany from calendar week 31 in 2003 through calendar week 30 in 2012. A negative binomial time series regression model was used to describe the weekly counts in 8∙2 age-sex strata while adjusting for secular trend and seasonality. Overall as well as age- and sex-specific factors for the excess were estimated by including additional terms (either an O104:H4 outbreak period indicator or a triple interaction term between outbreak period, age and sex) in the model. We estimated the overall under-reporting factor to be 1.76 (95% CI 1.28-2.41) for the first three weeks of the outbreak before the outbreak vehicle was publicly communicated. Highest under-reporting factors were here estimated for 20–29 year-old males (2.88, 95% CI 2.01-4.11) and females (2.67, 95% CI 1.87-3.79). Under-reporting was substantially lower in persons aged <10 years and 70 years or older. These are the first estimates of (minimal) under-reporting factors for norovirus illness in Germany. They provide a starting point for a more detailed investigation of the relationship between actual incidence and reporting incidence of norovirus illness in Germany.
Tài liệu tham khảo
Glass RI, Parashar UD, Estes MK: Norovirus gastroenteritis. N Engl J Med. 2009, 361 (18): 1776-1785. 10.1056/NEJMra0804575.
Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD: Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis. 2008, 14 (8): 1224-1231. 10.3201/eid1408.071114.
Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM: Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis. 2011, 17 (1): 7-15. 10.3201/eid1701.P11101.
Verhoef L, Koopmans M, Van Pelt W, Duizer E, Haagsma J, Werber D, Van Asten L, Havelaar A: The estimated disease burden of norovirus in The Netherlands. Epidemiol Infect. 2013, 141: 496-506. 10.1017/S0950268812000799. doi:10.1017/S0950268812000799
Hall AJ, Curns AT, McDonald LC, Parashar UD, Lopman BA: The roles of clostridium difficile and norovirus among gastroenteritis-associated deaths in the United States, 1999–2007. Clin Infect Dis. 2012, 55 (2): 216-223. 10.1093/cid/cis386.
Revised case definitions for the submission of evidence of dengue virus and norovirus and morbidity or death from dengue fever and norovirus gastroenteritis [in German]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2011, 54 (2): 246-50. doi: 10.1007/s00103-010-1214-9
Annual Epidemiological Report on Notifiable Infectious Diseases in Germany 2011 [in German]. Edited by: Robert Koch Institute. 2012, Berlin (Germany): Robert Koch Institute
Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR, Hunter PR, Gray JJ, Letley LH, Rait G, Tompkins DS, O'Brien SJ, IID2 Study Executive Committee: Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut. 2012, 61 (1): 69-77. 10.1136/gut.2011.238386.
Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Müller L, King LA, Rosner B, Buchholz U, Stark K, Krause G, HUS Investigation Team: Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med. 2011, 365 (19): 1771-1780. 10.1056/NEJMoa1106483.
Hilbe J: Negative Binomial Regression. 2011, Cambridge: Cambridge University Press, Second
Joint statement of BfR and RKI [in German]. http://www.rki.de/DE/Content/InfAZ/E/EHEC/EHEC_O104/Gemeinsame_Stellungnahme_RKI_BfR.html,
STEC/HUS O104:H4 – the outbreak is declared over [in German]. http://www.rki.de/DE/Content/Service/Presse/Pressemitteilungen/2011/11_2011.html,
New findings on the STEC outbreak [in German]. http://www.rki.de/DE/Content/Service/Presse/Pressemitteilungen/2011/08_2011.html,
Bernard H, Höhne M, Niendorf S, Altmann D, Stark K: Epidemiology of norovirus gastroenteritis in Germany 2001–2009: eight seasons of routine surveillance. Epidemiol Infect. 2014, 142 (1): 63-74. doi: 10.1017/S0950268813000435. Epub 2013 Mar 21
Lopman B, Armstrong B, Atchison C, Gray JJ: Host, weather and virological factors drive norovirus epidemiology: time-series analysis of laboratory surveillance data in England and Wales. PLoS One. 2009, 4 (8): e6671-10.1371/journal.pone.0006671.
Laboratory reports of norovirus infections in England and Wales by month of report, 2000–2012. http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Norovirus/EpidemiologicalData/,
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/14/116/prepub