Estimating the influence of crowding and travel time variability on accessibility to jobs in a large public transport network using smart card big data

Journal of Transport Geography - Tập 85 - Trang 102671 - 2020
Renato Arbex1, Claudio B. Cunha1
1Escola Politécnica da USP, University of São Paulo, São Paulo, Brazil

Tài liệu tham khảo

Alsger, 2016, Validating and improving public transport origin-destination estimation algorithm using smart card fare data, Transp. Res. Part C Emerg. Technol., 68, 490, 10.1016/j.trc.2016.05.004 Arbex, 2017, Estimação da matriz origem-destino e da distribuição espacial da lotação em um sistema de transporte sobre trilhos a partir de dados de bilhetagem eletrônica, Transportes, 25, 166, 10.14295/transportes.v25i3.1347 Arbex, 2018, 842 Arbex, 2016, Comparing accessibility in urban slums using smart card and bus GPS data Bagchi, 2005, The potential of public transport smart card data, Transp. Policy, 12, 464, 10.1016/j.tranpol.2005.06.008 Barry, 2002, Origin and destination estimation in New York City with automated fare system data, Transp. Res. Rec. J. Transp. Res. Board, 1817, 183, 10.3141/1817-24 Batarce, 2016, Valuing crowding in public transport: implications for cost-benefit analysis, Transp. Res. Part A Policy Pract., 91, 358, 10.1016/j.tra.2016.06.025 Birch, 2007, Rectangular and hexagonal grids used for observation, experiment and simulation in ecology, Ecol. Model., 206, 347, 10.1016/j.ecolmodel.2007.03.041 Boisjoly, 2016, Daily fluctuations in transit and job availability: a comparative assessment of time-sensitive accessibility measures, J. Transp. Geogr., 52, 73, 10.1016/j.jtrangeo.2016.03.004 Boisjoly, 2017, How to get there? A critical assessment of accessibility objectives and indicators in metropolitan transportation plans, Transp. Policy, 55, 38, 10.1016/j.tranpol.2016.12.011 Chen, 2009, Analyzing urban bus service reliability at the stop, route, and network levels, Transp. Res. Part A Policy Pract., 43, 722, 10.1016/j.tra.2009.07.006 Conveyal Conway, 2018, Accounting for uncertainty and variation in accessibility metrics for public transport sketch planning, J. Transp. Land Use, 11, 541, 10.5198/jtlu.2018.1074 Cortés, 2011, Commercial bus speed diagnosis based on GPS-monitored data, Transp. Res. Part C Emerg. Technol., 19, 695, 10.1016/j.trc.2010.12.008 Cui, 2018, Full cost analysis of accessibility, J. Transp. Land Use, 11, 661, 10.5198/jtlu.2018.1042 El-Geneidy, 2006, Access to destinations: development of accessibility measures El-Geneidy, 2016, The cost of equity: assessing transit accessibility and social disparity using total travel cost, Transp. Res. Part A Policy Pract., 91, 302, 10.1016/j.tra.2016.07.003 Farber, 2017, Dynamic public transit accessibility using travel time cubes: comparing the effects of infrastructure (dis)investments over time, Comput. Environ. Urban. Syst., 62, 30, 10.1016/j.compenvurbsys.2016.10.005 Fayyaz, 2017, Dynamic transit accessibility and transit gap causality analysis, J. Transp. Geogr., 59, 27, 10.1016/j.jtrangeo.2017.01.006 FHWA (Federal Highway Administration) Geurs, 2004, Accessibility evaluation of land-use and transport strategies: review and research directions, J. Transp. Geogr., 12, 127, 10.1016/j.jtrangeo.2003.10.005 Google Gordon, 2013, Automated inference of linked transit journeys in London using fare-transaction and vehicle location data, Transp. Res. Rec. J. Transp. Res. Board, 2343, 17, 10.3141/2343-03 Hansen, 1959, How accessibility shapes land use, J. Am. Inst. Plann., 25, 73, 10.1080/01944365908978307 Haywood, 2017, Crowding in public transport: who cares and why?, Transp. Res. Part A Policy Pract., 100, 215, 10.1016/j.tra.2017.04.022 He, 2015 Hernandez, 2018, Uneven mobilities , uneven opportunities : Social distribution of public transport accessibility to jobs and education in Montevideo, J. Transp. Geogr., 67, 119, 10.1016/j.jtrangeo.2017.08.017 Hickman, 2016, Transit origin-destination estimation, 15 Hörcher, 2017, Crowding cost estimation with large scale smart card and vehicle location data, Transp. Res. Part B Methodol., 95, 105, 10.1016/j.trb.2016.10.015 Iacono, 2010, Measuring non-motorized accessibility: issues, alternatives, and execution, J. Transp. Geogr., 18, 133, 10.1016/j.jtrangeo.2009.02.002 IBGE (Instituto Brasileiro de Geografia e Estatística) Kieu, 2015, Public transport travel-time variability definitions and monitoring, J. Transp. Eng., 141, 1, 10.1061/(ASCE)TE.1943-5436.0000724 Kittelson & Associates, I, 2013 Kwon, 2011, Decomposition of travel time reliability into various sources, Transp. Res. Rec. J. Transp. Res. Board, 2229, 28, 10.3141/2229-04 Lee, 2016, Valuation of travel time reliability accommodating heterogeneity of route choice behaviors, Transp. Res. Rec. J. Transp. Res. Board, 2565, 86, 10.3141/2565-10 Li, 2013, Crowding in public transport: a review of objective and subjective measures, J. Public Transp., 16, 107, 10.5038/2375-0901.16.2.6 Li, 2018, Smart card data mining of public transport destination: a literature review, Information, 9, 1 Liu, 2019, Smart card data-centric replication of the multi-modal public transport system in Singapore, J. Transp. Geogr., 76, 254, 10.1016/j.jtrangeo.2018.02.004 Lomax, 2003 Luo, 2018, Constructing spatiotemporal load profiles of transit vehicles with multiple data sources, Transp. Res. Rec. J. Transp. Res. Board, 2672, 175, 10.1177/0361198118781166 Ma, 2015, Modelling bus travel time reliability using supply and demand data from automatic vehicle location and smart card systems, 94th Annu. Meet. Transp. Res. Board, 14 Metrô SP Monteiro, 2015 MTE (Ministério do Trabalho) Munizaga, 2012, Estimation of a disaggregate multimodal public transport origin-destination matrix from passive smartcard data from Santiago, Chile. Transp. Res. Part C Emerg. Technol., 24, 9, 10.1016/j.trc.2012.01.007 NumPy OTP (OpenTripPlanner) Owen, 2015, Modeling the commute mode share of transit using continuous accessibility to jobs, Transp. Res. Part A Policy Pract., 74, 110, 10.1016/j.tra.2015.02.002 Páez, 2012, Measuring accessibility: positive and normative implementations of various accessibility indicators, J. Transp. Geogr., 25, 141, 10.1016/j.jtrangeo.2012.03.016 Pandas Pelletier, 2011, Smart card data use in public transit: a literature review, Transp. Res. Part C Emerg. Technol., 19, 557, 10.1016/j.trc.2010.12.003 Pereira, 2019, Future accessibility impacts of transport policy scenarios: equity and sensitivity to travel time thresholds for bus rapid transit expansion in Rio de Janeiro, J. Transp. Geogr., 74, 321, 10.1016/j.jtrangeo.2018.12.005 Pu, 2011, Analytic relationships between travel time reliability measures, Transp. Res. Rec. J. Transp. Res. Board, 2254, 122, 10.3141/2254-13 Robinson, 2014, Methods for pre-processing smartcard data to improve data quality, Transp. Res. Part C Emerg. Technol., 49, 43, 10.1016/j.trc.2014.10.006 Sarkar, 2017, Defining and assessing congestion inside metro trains and at station: case study of Delhi metro, India. Int. J. Traffic Transp. Eng., 7, 93, 10.7708/ijtte.2017.7(1).07 Scipopulis Seaborn, 2009, Using smart card fare payment data to analyze multi-modal public transport journeys in London, Transp. Res. Rec. J. Transp. Res. Board, 10.3141/2121-06 SPTrans Stewart, 2017, Mapping transit accessibility: possibilities for public participation, Transp. Res. Part A Policy Pract., 104, 150, 10.1016/j.tra.2017.03.015 Tirachini, 2013, Crowding in public transport systems: effects on users, operation and implications for the estimation of demand, Transp. Res. Part A Policy Pract., 53, 36, 10.1016/j.tra.2013.06.005 Tirachini, 2016, Valuation of sitting and standing in metro trains using revealed preferences, Transp. Policy, 47, 94, 10.1016/j.tranpol.2015.12.004 Tirachini, 2017, Estimation of crowding discomfort in public transport: results from Santiago de Chile, Transp. Res. Part A Policy Pract., 103, 311, 10.1016/j.tra.2017.06.008 Trépanier, 2007, Individual trip destination estimation in a transit smart card automated fare collection system, J. Intell. Transp. Syst. Technol. Planning, Oper., 11, 1, 10.1080/15472450601122256 Van Oort, 2015, Data-driven public transport ridership prediction approach including comfort aspects Walker, 2018, To predict with confidence, Plan for Freedom. J. Public Transp., 21, 119, 10.5038/2375-0901.21.1.12 Wang, 2011, Bus passenger origin-destination estimation and related analyses using automated data collection systems, J. Public Transp., 14, 131, 10.5038/2375-0901.14.4.7 Wessel, 2019, On the accuracy of schedule-based GTFS for measuring accessibility, J. Transp. Land Use, 12, 475, 10.5198/jtlu.2019.1502 Whelan, 2009 Widener, 2017, How do changes in the daily food and transportation environments affect grocery store accessibility?, Appl. Geogr., 83, 46, 10.1016/j.apgeog.2017.03.018 Wilson, 2016, Opportunities, challenges and thoughts for the future, 245 Yap, 2017, Crowding valuation in urban tram and bus transportation based on smart card data. Thredbo 15 Compet, Owndersh. L. Passeng. Transp., 60, 4305