Estimating the influence of crowding and travel time variability on accessibility to jobs in a large public transport network using smart card big data
Tài liệu tham khảo
Alsger, 2016, Validating and improving public transport origin-destination estimation algorithm using smart card fare data, Transp. Res. Part C Emerg. Technol., 68, 490, 10.1016/j.trc.2016.05.004
Arbex, 2017, Estimação da matriz origem-destino e da distribuição espacial da lotação em um sistema de transporte sobre trilhos a partir de dados de bilhetagem eletrônica, Transportes, 25, 166, 10.14295/transportes.v25i3.1347
Arbex, 2018, 842
Arbex, 2016, Comparing accessibility in urban slums using smart card and bus GPS data
Bagchi, 2005, The potential of public transport smart card data, Transp. Policy, 12, 464, 10.1016/j.tranpol.2005.06.008
Barry, 2002, Origin and destination estimation in New York City with automated fare system data, Transp. Res. Rec. J. Transp. Res. Board, 1817, 183, 10.3141/1817-24
Batarce, 2016, Valuing crowding in public transport: implications for cost-benefit analysis, Transp. Res. Part A Policy Pract., 91, 358, 10.1016/j.tra.2016.06.025
Birch, 2007, Rectangular and hexagonal grids used for observation, experiment and simulation in ecology, Ecol. Model., 206, 347, 10.1016/j.ecolmodel.2007.03.041
Boisjoly, 2016, Daily fluctuations in transit and job availability: a comparative assessment of time-sensitive accessibility measures, J. Transp. Geogr., 52, 73, 10.1016/j.jtrangeo.2016.03.004
Boisjoly, 2017, How to get there? A critical assessment of accessibility objectives and indicators in metropolitan transportation plans, Transp. Policy, 55, 38, 10.1016/j.tranpol.2016.12.011
Chen, 2009, Analyzing urban bus service reliability at the stop, route, and network levels, Transp. Res. Part A Policy Pract., 43, 722, 10.1016/j.tra.2009.07.006
Conveyal
Conway, 2018, Accounting for uncertainty and variation in accessibility metrics for public transport sketch planning, J. Transp. Land Use, 11, 541, 10.5198/jtlu.2018.1074
Cortés, 2011, Commercial bus speed diagnosis based on GPS-monitored data, Transp. Res. Part C Emerg. Technol., 19, 695, 10.1016/j.trc.2010.12.008
Cui, 2018, Full cost analysis of accessibility, J. Transp. Land Use, 11, 661, 10.5198/jtlu.2018.1042
El-Geneidy, 2006, Access to destinations: development of accessibility measures
El-Geneidy, 2016, The cost of equity: assessing transit accessibility and social disparity using total travel cost, Transp. Res. Part A Policy Pract., 91, 302, 10.1016/j.tra.2016.07.003
Farber, 2017, Dynamic public transit accessibility using travel time cubes: comparing the effects of infrastructure (dis)investments over time, Comput. Environ. Urban. Syst., 62, 30, 10.1016/j.compenvurbsys.2016.10.005
Fayyaz, 2017, Dynamic transit accessibility and transit gap causality analysis, J. Transp. Geogr., 59, 27, 10.1016/j.jtrangeo.2017.01.006
FHWA (Federal Highway Administration)
Geurs, 2004, Accessibility evaluation of land-use and transport strategies: review and research directions, J. Transp. Geogr., 12, 127, 10.1016/j.jtrangeo.2003.10.005
Google
Gordon, 2013, Automated inference of linked transit journeys in London using fare-transaction and vehicle location data, Transp. Res. Rec. J. Transp. Res. Board, 2343, 17, 10.3141/2343-03
Hansen, 1959, How accessibility shapes land use, J. Am. Inst. Plann., 25, 73, 10.1080/01944365908978307
Haywood, 2017, Crowding in public transport: who cares and why?, Transp. Res. Part A Policy Pract., 100, 215, 10.1016/j.tra.2017.04.022
He, 2015
Hernandez, 2018, Uneven mobilities , uneven opportunities : Social distribution of public transport accessibility to jobs and education in Montevideo, J. Transp. Geogr., 67, 119, 10.1016/j.jtrangeo.2017.08.017
Hickman, 2016, Transit origin-destination estimation, 15
Hörcher, 2017, Crowding cost estimation with large scale smart card and vehicle location data, Transp. Res. Part B Methodol., 95, 105, 10.1016/j.trb.2016.10.015
Iacono, 2010, Measuring non-motorized accessibility: issues, alternatives, and execution, J. Transp. Geogr., 18, 133, 10.1016/j.jtrangeo.2009.02.002
IBGE (Instituto Brasileiro de Geografia e Estatística)
Kieu, 2015, Public transport travel-time variability definitions and monitoring, J. Transp. Eng., 141, 1, 10.1061/(ASCE)TE.1943-5436.0000724
Kittelson & Associates, I, 2013
Kwon, 2011, Decomposition of travel time reliability into various sources, Transp. Res. Rec. J. Transp. Res. Board, 2229, 28, 10.3141/2229-04
Lee, 2016, Valuation of travel time reliability accommodating heterogeneity of route choice behaviors, Transp. Res. Rec. J. Transp. Res. Board, 2565, 86, 10.3141/2565-10
Li, 2013, Crowding in public transport: a review of objective and subjective measures, J. Public Transp., 16, 107, 10.5038/2375-0901.16.2.6
Li, 2018, Smart card data mining of public transport destination: a literature review, Information, 9, 1
Liu, 2019, Smart card data-centric replication of the multi-modal public transport system in Singapore, J. Transp. Geogr., 76, 254, 10.1016/j.jtrangeo.2018.02.004
Lomax, 2003
Luo, 2018, Constructing spatiotemporal load profiles of transit vehicles with multiple data sources, Transp. Res. Rec. J. Transp. Res. Board, 2672, 175, 10.1177/0361198118781166
Ma, 2015, Modelling bus travel time reliability using supply and demand data from automatic vehicle location and smart card systems, 94th Annu. Meet. Transp. Res. Board, 14
Metrô SP
Monteiro, 2015
MTE (Ministério do Trabalho)
Munizaga, 2012, Estimation of a disaggregate multimodal public transport origin-destination matrix from passive smartcard data from Santiago, Chile. Transp. Res. Part C Emerg. Technol., 24, 9, 10.1016/j.trc.2012.01.007
NumPy
OTP (OpenTripPlanner)
Owen, 2015, Modeling the commute mode share of transit using continuous accessibility to jobs, Transp. Res. Part A Policy Pract., 74, 110, 10.1016/j.tra.2015.02.002
Páez, 2012, Measuring accessibility: positive and normative implementations of various accessibility indicators, J. Transp. Geogr., 25, 141, 10.1016/j.jtrangeo.2012.03.016
Pandas
Pelletier, 2011, Smart card data use in public transit: a literature review, Transp. Res. Part C Emerg. Technol., 19, 557, 10.1016/j.trc.2010.12.003
Pereira, 2019, Future accessibility impacts of transport policy scenarios: equity and sensitivity to travel time thresholds for bus rapid transit expansion in Rio de Janeiro, J. Transp. Geogr., 74, 321, 10.1016/j.jtrangeo.2018.12.005
Pu, 2011, Analytic relationships between travel time reliability measures, Transp. Res. Rec. J. Transp. Res. Board, 2254, 122, 10.3141/2254-13
Robinson, 2014, Methods for pre-processing smartcard data to improve data quality, Transp. Res. Part C Emerg. Technol., 49, 43, 10.1016/j.trc.2014.10.006
Sarkar, 2017, Defining and assessing congestion inside metro trains and at station: case study of Delhi metro, India. Int. J. Traffic Transp. Eng., 7, 93, 10.7708/ijtte.2017.7(1).07
Scipopulis
Seaborn, 2009, Using smart card fare payment data to analyze multi-modal public transport journeys in London, Transp. Res. Rec. J. Transp. Res. Board, 10.3141/2121-06
SPTrans
Stewart, 2017, Mapping transit accessibility: possibilities for public participation, Transp. Res. Part A Policy Pract., 104, 150, 10.1016/j.tra.2017.03.015
Tirachini, 2013, Crowding in public transport systems: effects on users, operation and implications for the estimation of demand, Transp. Res. Part A Policy Pract., 53, 36, 10.1016/j.tra.2013.06.005
Tirachini, 2016, Valuation of sitting and standing in metro trains using revealed preferences, Transp. Policy, 47, 94, 10.1016/j.tranpol.2015.12.004
Tirachini, 2017, Estimation of crowding discomfort in public transport: results from Santiago de Chile, Transp. Res. Part A Policy Pract., 103, 311, 10.1016/j.tra.2017.06.008
Trépanier, 2007, Individual trip destination estimation in a transit smart card automated fare collection system, J. Intell. Transp. Syst. Technol. Planning, Oper., 11, 1, 10.1080/15472450601122256
Van Oort, 2015, Data-driven public transport ridership prediction approach including comfort aspects
Walker, 2018, To predict with confidence, Plan for Freedom. J. Public Transp., 21, 119, 10.5038/2375-0901.21.1.12
Wang, 2011, Bus passenger origin-destination estimation and related analyses using automated data collection systems, J. Public Transp., 14, 131, 10.5038/2375-0901.14.4.7
Wessel, 2019, On the accuracy of schedule-based GTFS for measuring accessibility, J. Transp. Land Use, 12, 475, 10.5198/jtlu.2019.1502
Whelan, 2009
Widener, 2017, How do changes in the daily food and transportation environments affect grocery store accessibility?, Appl. Geogr., 83, 46, 10.1016/j.apgeog.2017.03.018
Wilson, 2016, Opportunities, challenges and thoughts for the future, 245
Yap, 2017, Crowding valuation in urban tram and bus transportation based on smart card data. Thredbo 15 Compet, Owndersh. L. Passeng. Transp., 60, 4305