Estimating shear properties of walnut wood: a combined experimental and theoretical approach

Matériaux et constructions - Tập 50 Số 6 - 2017
Erik Valentine Bachtiar1, Markus Rüggeberg1, Stefan Hering2, Michael Kaliske3, Peter Niemz4
1Institute for Building Materials, ETH Zürich, 8093, Zurich, Switzerland
2Former Institute for Building Materials, ETH Zürich, 8093, Zurich, Switzerland
3Institute for Structural Analysis, Technische Universität Dresden, 01069 Dresden, Germany
4Institute for Material and Wood Technology, Bern University of Applied Sciences, 6096, Biel, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Landau LD, Lifshitz EM (1970) Theory of elasticity, vol 7. Course of theoretical physics, 2nd edn. Pergamon Press, Oxford

von Mises R (1913) Mechanik der festen Körper in plastisch-deformable Zustand. Nachr d Kgl Ges Wiss Göttingen, Math-phys Klasse 1(1):582–592

Tresca H (1864) Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. Imprimerie impériale, Paris

Iosipescu N (1967) New accurate procedure for single shear testing of metals. J Mater 2(3):537–566

Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp Mech 18(4):141–146. https://doi.org/10.1007/bf02324146

Xavier J, Oliveira M, Morais J, Pinto T (2009) Measurement of the shear properties of clear wood by the Arcan test. Holzforschung 63(2):217–225

DIN-52187 (1979) Prüfung von Holz: Bestimmung der Scherfestigkeit in Faserrichtung. Beuth Verlag GmbH, Berlin

Bodig J, Jayne B (1993) Mechanics of wood and wood composites. Krieger Publishing Company, Malabar

Bucur V, Archer R (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18(4):255–265

Müller U, Ringhofer A, Brandner R, Schickhofer G (2015) Homogeneous shear stress field of wood in an Arcan shear test configuration measured by means of electronic speckle pattern interferometry: description of the test setup. Wood Sci Technol 49(6):1123–1136. https://doi.org/10.1007/s00226-015-0755-3

Saint-Venant B (1863) Mémoire sur la destribution d’lasticit. Journal de Mathématiques Pures et Appliquées (Liouville), ser 2, t 8

Lekhnitskii S (1963) Theory of elasticity of an anisotropic elastic body. Holden Day, Inc., San Francisco

Bachtiar EV, Sanabria SJ, Mittig JP, Niemz P (2017) Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques. Wood Sci Technol 51(1):47–67. https://doi.org/10.1007/s00226-016-0851-z

Bachtiar EV, Rüggeberg M, Niemz P (2017) Mechanical behavior of walnut (Juglans regia L.) and cherry (Prunus avium L.) wood in tension and compression in all anatomical directions. Revisiting the tensile/compressive stiffness ratios of wood. In print Holzforschung 2017

DIN-52184 (1979) Prüfung von Holz: Bestimmung der Quellung and Schwindung. Beuth Verlag GmbH, Berlin

DIN-52183 (1977) Prüfung von Holz: Bestimmung des Feuchtigkeitsgehaltes. Beuth Verlag GmbH, Berlin

Hasanpour R, Choupani N (2009) Rock fracture characterization using the modified Arcan test specimen. Int J Rock Mech Min Sci 46(2):346–354

Deshpande V, Fleck N (2001) Multi-axial yield behaviour of polymer foams. Acta Mater 49(10):1859–1866

Cognard J-Y, Sohier L, Davies P (2011) A modified Arcan test to analyze the behavior of composites and their assemblies under out-of-plane loadings. Compos A Appl Sci Manuf 42(1):111–121

Jurf RA, Pipes RB (1982) Interlaminar fracture of composite materials. J Compos Mater 16(5):386–394

Clauss S, Pescatore C, Niemz P (2014) Anisotropic elastic properties of common ash (Fraxinus excelsior L.). Holzforschung 68(8):941–949

Keunecke D, Hering S, Niemz P (2008) Three-dimensional elastic behaviour of common yew and norway spruce. Wood Sci Technol 42(8):633–647

Hankinson R (1921) Investigation of crushing strength of spruce at varying angles of grain. Tech. Rep. No. 259, U.S. Air Service

Yoshihara H (2009) Prediction of the off-axis stress-strain relation of wood under compression loading. Eur J Wood Wood Prod 67(2):183–188

Radcliffe B (1965) A theoretical evaluation of Hankinson’s formula for modulus of elasticity of wood at an angle to the grain. Quart Bull Michigan Agr Exp Sta 48(1):286–295

Keylwerth R (1951) The anisotropic elasticity of wood and plywood (Die anisotrope Elastizität des Holzes und der Lagenhölzer). Verlag des Vereins Deutscher Ingenieure VDI-Forschungsheft 430

Garab J, Keunecke D, Hering S, Szalai J, Niemz P (2010) Measurement of standard and off-axis elastic moduli and poisson’s ratios of spruce and yew wood in the transverse plane. Wood Sci Technol 44(3):451–464

Kon T (1948) On the law of variation of the modulus of elasticity for bending in wooden beams. Bull Hokkaido Univ Dept Eng 1(1):157–166

Aicher S, Klöck W (2001) Linear versus quadratic failure criteria for in-plane loaded wood based panels. Otto-Graft-J 12(1):187–199

Norris C (1962) Strength of orthotropic materials sucbhected to combined stresses. Technical Report No. 1816. U.S. Dept. of Agriculture, Forest Service Forest Products Laboratory, Madison, Wisconsin, USA

Hill R (1950) The mathematical theory of plasticity. Oxford University Press Inc., New York

Tsai SW, Wu EM (1971) A general theory of strength for anisotropic material. J Compos Mater 5(1):58–80

Ku HH (1966) Notes on the use of propagation of error formulas. J Res Natl Bureau Stand 70(4):263–273

Stephens MA (1974) EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc 69(347):730–737. https://doi.org/10.1080/01621459.1974.10480196

Snedecor G, Cochran W (1989) Statistical methods, 8th edn. Iowa University Press, Iowa City

Kollmann FFP, Coté WA (1984) Principles of wood science and technology. Springer, Berlin

Bucur V (2006) Acoustic of wood. Springer Series in Wood Science. Springer, Berlin

Wagenführ A, Scholz F (2012) Taschenbuch der Holztechnik. Carl Hanser Verlag GmbH & Co. KG, München

Reichel S (2015) Modellierung und Simulation hygro-mechanisch beanspruchter Strukturen aus Holz im Kurz- und Langzeitbereich. Technische Universität Dresden, Dresden

Ozyhar T, Mohl L, Hering S, Hass P, Zeindler L, Ackermann R, Niemz P (2016) Orthotropic hygric and mechanical material properties of oak wood. Wood Mater Sci Eng 11(1):36–45. https://doi.org/10.1080/17480272.2014.941930

Sonderegger W, Martienssen A, Nitsche C, Ozyhar T, Kaliske M, Niemz P (2013) Investigations on the physical and mechanical behaviour of sycamore maple (Acer pseudoplatanus L.). Eur J Wood Wood Prod 71(1):91–99. https://doi.org/10.1007/s00107-012-0641-8

Donaldson L (2011) Delamination of wood at the microscopic scale: current knowledge and methods. In: Bucur V (ed) Delamination in wood, wood products and wood-based composites. Springer, Dordrecht, pp 123–144

Gerhards C (1982) Effect of moisture content and temperature on the mechanical properties of wood: an analysis of immediate effects. Wood Fiber Sci 14(1):4–36

Skaar C (1988) Wood-water relations. Springer, New York

Winandy JE, Rowell RM (1984) The chemistry of wood strength. ACS Publications, Washington

Goodman JR, Bodig J (1971) Orthotropic strength of wood in compression. J Wood Sci 4(2):83–94

Ross RJ (2010) Wood handbook: wood as an engineering material. U.S. Dep. Agric, Madison

Cabrero JM, Gebremedhin KG (2010) Evaluation of failure criteria in wood members. In: WCTE 2010: World Conference on Timber Engineering, Riva Del Garda, Trento, Italy

Zítek P, Vyhlídal T (2009) Model-based moisture sorption stabilization in historical buildings. Build Environ 44(6):1181–1187

Konopka D, Gebhardt C, Kaliske M (2016) Numerical modelling of wooden structures. J Cult Herit 24:S93–S103