Estimating relative eigenvalue errors in the Craig-Bampton method

Computers & Structures - Tập 139 - Trang 54-64 - 2014
Jin-Gyun Kim1, Kang-Heon Lee1, Phill-Seung Lee1
1Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

Tài liệu tham khảo

Craig, 1968, Coupling of substructures for dynamic analysis, AIAA J, 6, 1313, 10.2514/3.4741 Hurty, 1965, Dynamic analysis of structural systems using component modes, AIAA J, 3, 678, 10.2514/3.2947 Guyan, 1965, Reduction of stiffness and mass matrices, AIAA J, 3, 380, 10.2514/3.2874 MacNeal, 1971, Hybrid method of component mode synthesis, Comput Struct, 1, 581, 10.1016/0045-7949(71)90031-9 Benfield, 1971, Vibration analysis of structures by component mode substitution, AIAA J, 9, 1255, 10.2514/3.49936 Rubin, 1975, Improved component-mode representation for structural dynamic analysis, AIAA J, 13, 995, 10.2514/3.60497 Hintz, 1975, Analytical methods in component modal synthesis, AIAA J, 13, 1007, 10.2514/3.60498 Bennighof, 2004, An automated multilevel substructuring method for eigenspace computation in linear elastodynamics, SIAM J Sci Comput, 25, 2084106, 10.1137/S1064827502400650 Park, 2004, Partitioned component mode synthesis via a flexibility approach, AIAA J, 42, 1236, 10.2514/1.10423 Rixen, 2004, A dual Craig-Bampton method for dynamic substructuring, J Comput Appl Math, 168, 383, 10.1016/j.cam.2003.12.014 Markovic, 2007, Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis, Int J Numer Methods Eng, 70, 163, 10.1002/nme.1878 Klerk, 2008, General framework for dynamic substructuring: history, review, and classification of techniques, AIAA J, 46, 1169, 10.2514/1.33274 Park KC, Kim JG, Lee PS. A mode selection criterion based on flexibility approach in component mode synthesis. In: Proceeding 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference USA. Hawaii; 2012. Bourquin, 1990, Analysis and comparison of several component mode synthesis methods on one dimensional domains, Numer Math, 58, 11, 10.1007/BF01385608 Yang, 2005, An algebraic substructuring method for large-scale eigenvalue calculation, SIAM J Sci Comput, 27, 873, 10.1137/040613767 Elssel, 2007, An a priori bound for automated multilevel substructuring, SIAM J Matrix Anal Appl, 28, 386, 10.1137/040616097 Jakobsson, 2011, A posteriori error analysis of component mode synthesis for the elliptic eigenvalue problem, Comput Methods Appl Mech Eng, 200, 2840, 10.1016/j.cma.2011.05.002 Kim JG, Lee PS. Mode selection and error estimation methods for the flexibility based component mode synthesis method. In: OSE (Ocean Systems Engineering) REPORT, 2013. Dvorkin, 1984, A continuum mechanics based four-node shell element for general nonlinear analysis, Eng Comput, 1, 77, 10.1108/eb023562 Bathe, 1986, A formulation of general shell elements the use of mixed interpolation of tensorial components, Int J Numer Methods Eng, 22, 697, 10.1002/nme.1620220312 Lee, 2004, Development of MITC isotropic triangular shell finite elements, Comput Struct, 82, 945, 10.1016/j.compstruc.2004.02.004 Lee, 2012, Improving the MITC3 shell finite element by using the Hellinger–Reissner principle, Comput Struct, 110–111, 93, 10.1016/j.compstruc.2012.07.004 Jeon, 2014, The MITC3 shell finite element enriched by interpolation covers, Comput Struct, 134, 128, 10.1016/j.compstruc.2013.12.003 Lee, 2014, The MITC3+ shell finite element and its performance, Comput Struct, 138, 12, 10.1016/j.compstruc.2014.02.005