Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ước lượng lượng nước rút từ ống dẫn bằng phương pháp mềm kết hợp sóng trong điều kiện khí hậu đồng nhất và không đồng nhất
Tóm tắt
Do biến đổi khí hậu và sự suy giảm nguồn tài nguyên nước mặt gần đây, tài nguyên nước ngầm, đặc biệt là nước ống dẫn, có vai trò đặc biệt quan trọng để đáp ứng các yêu cầu khác nhau của con người ở các vùng khô hạn và bán khô hạn. Với mục tiêu ước lượng lượng nước rút từ ống dẫn (AWW) cho các mục đích nông nghiệp, nghiên cứu hiện tại được thực hiện ở các khu vực Golpayegan và Kashan của Iran; được phân loại trong các vùng khí hậu không đồng nhất và đồng nhất với tình trạng thiếu nước. Các biến AWW được ước lượng dựa trên bốn kịch bản bao gồm (1) đặc điểm địa phương của ống dẫn, (2) thủy văn, (3) sử dụng đất, và (4) kịch bản kết hợp. Các biến [(Độ sâu giếng mẹ (MWD), chiều dài kênh ống dẫn (ACL)), (lưu lượng tối thiểu (QMin), lưu lượng tối đa (QMax)), và (Diện tích canh tác (CA), Diện tích vườn (OA))] liên quan đến kịch bản đầu tiên đến kịch bản thứ ba, tương ứng. Việc ước lượng AWW được thực hiện thông qua các phương pháp Soft-computing (SC) đơn lẻ và kết hợp sóng (W-hybrid với khử nhiễu), bao gồm mạng nơ-ron nhân tạo (ANNs), Wavelet-ANN (WANNs), hệ thống suy diễn mờ thích ứng (ANFIS), Wavelet-ANFIS (WANFIS), lập trình biểu thức gen (GEP), và Wavelet-GEP (WGEP). Hiệu quả của mô hình WGEP với các đặc điểm kết hợp của các biến MWD, ACL, QMin, QMax, CA và OA được khuyến nghị là mô hình tốt nhất để ước lượng các biến AWW không bị ảnh hưởng bởi điều kiện khí hậu. Với việc tăng mức độ phân rã trong phương pháp sóng và giảm nhiễu, hiệu suất của các mô hình ước lượng AWW đã tăng lên. Ngoài ra, các phát hiện cho thấy rằng việc thực hiện phương pháp đề xuất trong các khí hậu đồng nhất có thể có hiệu suất cao hơn so với khí hậu không đồng nhất. Giá trị RMSE đạt được cho yếu tố kết hợp của các mô hình WGEP lần lượt là 23.249 và 17.227 (×103 m3), cho ước lượng AWW ở Golpayegan và Kashan. Hiệu suất của WGEP rất xuất sắc (R > 0.920) trong việc ước lượng AWW ở cả hai loại khí hậu cho các mức cực đại. Việc trừu tượng hóa công thức toán học của các mô hình GEP và WGEP là một phần trong nghiên cứu tìm ra các ảnh hưởng sâu sắc từ việc thực hiện các chính sách liên quan đến Quản lý Tài nguyên Nước Tích hợp để bảo vệ sự hủy hoại của ống dẫn do tiêu thụ quá mức.
Từ khóa
#biến đổi khí hậu #nguồn nước ngầm #ống dẫn #ước lượng AWW #phương pháp mềm kết hợp sóng #mô hình WGEPTài liệu tham khảo
Afkhamifar, S., & Sarraf, A. (2020). Prediction of groundwater level in Urmia Plain aquifer using hybrid model of wavelet Transform-Extreme Learning Machine based on quantum particle swarm optimization. Watershed Engineering and Management, 12(2), 351–364. https://doi.org/10.22092/ijwmse.2019.126515.1669
Alagha, J. S., Seyam, M., Said, M. A. M., & Mogheir, Y. (2017). Integrating an artificial intelligence approach with k-means clustering to model groundwater salinity: The case of Gaza coastal aquifer (Palestine). Hydrogeology Journal, 25(8), 2347–2361. https://doi.org/10.1007/s10040-017-1658-1
Allafta, H., Opp, C., & Patra, S. (2021). Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the Shatt Al-Arab basin. Remote Sensing., 13(1), 112. https://doi.org/10.3390/rs13010112
Azizi, H., Ebrahimi, H., Samani, H. M. V., & Khaki, V. (2021). Evaluating the effects of climate change on groundwater level in the varamin plain. Water Supply, 21(3), 1372–1384. https://doi.org/10.2166/ws.2021.007
Bahmani, R., Solgi, A., & Ouarda, T. B. (2020). Groundwater level simulation using gene expression programming and M5 model tree combined with wavelet transform. Hydrological Sciences Journal, 65(8), 1430–1442. https://doi.org/10.1080/02626667.2020.1749762
Band, S. S., Heggy, E., Bateni, S. M., Karami, H., Rabiee, M., Samadianfard, S., Chau, K.-W., & Mosavi, A. (2021). Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Engineering Applications of Computational Fluid Mechanics, 15(1), 1147–1158. https://doi.org/10.1080/19942060.2021.1944913
Berbel, J., Gutiérrez-Martín, C., & Expósito, A. (2018). Impacts of irrigation efficiency improvement on water use, water consumption and response to water price at field level. Agricultural Water Management, 203, 423–429. https://doi.org/10.1016/j.agwat.2018.02.026
Bisht, D., Jain, S., & Raju, M. M. (2013). Prediction of water table elevation fluctuation through fuzzy logic & artificial neural networks. International Journal of Advanced Science and Technology, 51(2), 107–120.
Cetin, M. (2015). Using GIS analysis to assess urban green space in terms of accessibility: Case study in Kutahya. International Journal of Sustainable Development & World Ecology, 22(5), 420–424. https://doi.org/10.1080/13504509.2015.1061066
Cetin, M. (2016). Determination of bioclimatic comfort areas in landscape planning: A case study of Cide Coastline. Turkish Journal of Agriculture-Food Science and Technology, 4(9), 800–804. https://doi.org/10.24925/turjaf.v4i9.800-804.872
Cetin, M. (2019). The effect of urban planning on urban formations determining bioclimatic comfort area’s effect using satellitia imagines on air quality: A case study of Bursa city. Air Quality, Atmosphere & Health, 12(10), 1237–1249. https://doi.org/10.1007/s11869-019-00742-4
Cetin, M. (2020). Climate comfort depending on different altitudes and land use in the urban areas in Kahramanmaras City. Air Quality, Atmosphere & Health, 13(8), 991–999. https://doi.org/10.1007/s11869-020-00858-y
Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2018). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20(1), 361–375. https://doi.org/10.1007/s10668-016-9885-5
Chai, Y., Jia, L., & Zhang, Z. (2009). Mamdani model based adaptive neural fuzzy inference system and its application. International Journal of Computational Intelligence, 5(1), 22–29.
Cui, Y., Liao, Z., Wei, Y., Xu, X., Song, Y., & Liu, H. (2020). The Response of Groundwater Level to Climate Change and Human Activities in Baotou City, China. Water, 12(4), 1078. https://doi.org/10.3390/w12041078
Dehghani, R., Poudeh, H. T., & Izadi, Z. (2022). The effect of climate change on groundwater level and its prediction using modern meta-heuristic model. Groundwater for Sustainable Development, 16, 100702. https://doi.org/10.1016/j.gsd.2021.100702
Diersch, H. J. G. (2013). FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer.
Ebrahimi, H., & Rajaee, T. (2017). Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change, 148, 181–191. https://doi.org/10.1016/j.gloplacha.2016.11.014
Edalat, A., Khodaparast, M., & Rajabi, A. M. (2020). Detecting land subsidence due to groundwater withdrawal in Aliabad Plain, Iran, using ESA sentinel-1 satellite data. Natural Resources Research, 29(3), 1935–1950. https://doi.org/10.1007/s11053-019-09546-w
Emadi, A., Sobhani, R., Ahmadi, H., Boroomandnia, A., Zamanzad-Ghavidel, S., & Azamathulla, H. M. (2021a). Multivariate modeling of agricultural river water abstraction via novel integrated-wavelet methods in various climatic conditions. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01637-0
Emadi, A., Sobhani, R., Ahmadi, H., Boroomandnia, A., Zamanzad-Ghavidel, S., & Azamathulla, H. M. (2021b). Multivariate modeling of river water withdrawal using a hybrid evolutionary data-driven method. Water Supply. https://doi.org/10.2166/ws.2021.224
Ferreira, C. (2001). Gene expression programming: A new adaptive algorithm for solving problems. arXiv preprint. arXiv:cs/0102.027
Ghumman, A. R., Jamaan, M., Ahmad, A., Shafiquzzaman, M., Haider, H., Al Salamah, I. S., & Ghazaw, Y. M. (2021). Simulation of Pan-evaporation using Penman and Hamon equations and artificial intelligence techniques. Water, 13(6), 793. https://doi.org/10.3390/w13060793
Gong, Y., Wang, Z., Xu, G., & Zhang, Z. (2018). A comparative study of groundwater level forecasting using data-driven models based on ensemble empirical mode decomposition. Water, 10(6), 730. https://doi.org/10.3390/w10060730
Halder, S., Roy, M. B., & Roy, P. K. (2020). Analysis of groundwater level trend and groundwater drought using Standard Groundwater Level Index: A case study of an eastern river basin of West Bengal, India. SN Applied Sciences, 2(3), 1–24. https://doi.org/10.1007/s42452-020-2302-6
Hintze, J. L., & Nelson, R. D. (1998). Violin plots: A box plot-density trace synergism. The American Statistician, 52(2), 181–184.
Indiradevi, K. P., Elias, E., Sathidevi, P. S., Nayak, S. D., & Radhakrishnan, K. (2008). A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram. Computers in Biology and Medicine, 38(7), 805–816. https://doi.org/10.1016/j.compbiomed.2008.04.010
Jafari, M. M., Ojaghlou, H., Zare, M., & Schumann, G. J. P. (2021). Application of a novel hybrid wavelet-ANFIS/fuzzy C-means clustering model to predict groundwater fluctuations. Atmosphere, 12(1), 9. https://doi.org/10.3390/atmos12010009
Jafari, N. S., & Alimohammadi, S. (2021). Uncertainty and sensitivity analysis of solute contaminant transport simulation in groundwater (case study: Qazvin plain). Journal of Water and Wastewater, 32(1), 91–105. https://doi.org/10.22093/wwj.2020.229174.3016
Jeihouni, E., Mohammadi, M., Eslamian, S., & Zareian, M. J. (2019). Potential impacts of climate change on groundwater level through hybrid soft-computing methods: A case study—Shabestar Plain, Iran. Environmental Monitoring and Assessment, 191(10), 1–16. https://doi.org/10.1007/s10661-019-7784-6
Jeong, J., & Park, E. (2019). Comparative applications of data-driven models representing water table fluctuations. Journal of Hydrology, 572, 261–273. https://doi.org/10.1016/j.jhydrol.2019.02.051
Jomehpour, M. (2009). Qanat irrigation systems as important and ingenious agricultural heritage: Case study of the qanats of Kashan, Iran. International Journal of Environmental Studies, 66(3), 297–315. https://doi.org/10.1080/00207230902752629
Kişi, Ö. (2009). Evolutionary fuzzy models for river suspended sediment concentration estimation. Journal of Hydrology, 372(1–4), 68–79. https://doi.org/10.1016/j.jhydrol.2009.03.036
Lallahem, S., Mania, J., Hani, A., & Najjar, Y. (2005). On the use of neural networks to evaluate groundwater levels in fractured media. Journal of Hydrology, 307(1–4), 92–111. https://doi.org/10.1016/j.jhydrol.2004.10.005
Lerner, D. N., & Harris, B. (2009). The relationship between land use and groundwater resources and quality. Land Use Policy, 26, S265–S273. https://doi.org/10.1016/j.landusepol.2009.09.005
Mack, T. J., Chornack, M. P., & Taher, M. R. (2013). Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan. Environment Systems and Decisions, 33(3), 457–467. https://doi.org/10.1007/s10669-013-9455-4
Maiti, S., & Tiwari, R. K. (2014). A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environmental Earth Sciences, 71(7), 3147–3160. https://doi.org/10.1007/s12665-013-2702-7
Margat, J., & Van der Gun, J. (2013). Groundwater around the world: A geographic synopsis. CRC Press.
Mohapatra, J. B., Jha, P., Jha, M. K., & Biswal, S. (2021). Efficacy of machine learning techniques in predicting groundwater fluctuations in agro-ecological zones of India. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2021.147319
Montaseri, M., Ghavidel, S. Z. Z., & Sanikhani, H. (2018). Water quality variations in different climates of Iran: Toward modeling total dissolved solid using soft computing techniques. Stochastic Environmental Research and Risk Assessment, 32(8), 2253–2273. https://doi.org/10.1007/s00477-018-1554-9
Moosavi, V., Vafakhah, M., Shirmohammadi, B., & Behnia, N. (2013). A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resources Management, 27(5), 1301–1321. https://doi.org/10.1007/s11269-012-0239-2
Naghedifar, S. M., Ziaei, A. N., Naghedifar, S. A., & Ansari, H. (2020). A new model for simulation of collection and conveyance sections of Qanat. Journal of Hydrology, 590, 125218. https://doi.org/10.1016/j.jhydrol.2020.125218
Nayak, P. C., Rao, Y. S., & Sudheer, K. P. (2006). Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management, 20(1), 77–90. https://doi.org/10.1007/s11269-006-4007-z
Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1–2), 52–66. https://doi.org/10.1016/j.jhydrol.2003.12.010
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.
Nourani, V., Alami, M. T., & Vousoughi, F. D. (2015). Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. Journal of Hydrology, 524, 255–269. https://doi.org/10.1016/j.jhydrol.2015.02.048
Nourani, V., & Komasi, M. (2013). A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process. Journal of Hydrology, 490, 41–55. https://doi.org/10.1016/j.jhydrol.2013.03.024
Nourani, V., & Salehi, K. (2008). Rainfall-runoff modeling using adaptive fuzzy neural network method and comparing it with neural network and fuzzy inference method Case study: (Lighvan Chay catchment area in East Aegean province). University of Tehran.
Poursaeid, M., Mastouri, R., Shabanlou, S., & Najarchi, M. (2021). Modelling qualitative and quantitative parameters of groundwater using a new wavelet conjunction heuristic method: Wavelet extreme learning machine versus wavelet neural networks. Water and Environment Journal, 35(1), 67–83. https://doi.org/10.1111/wej.12595
Rajakumari, S. B., & Nalini, C. (2016). Identification of lead contaminant in river water quality data. Journal of Chemical and Pharmaceutical Sciences, 9(4), 2764–2766.
Sağır, Ç., Kurtuluş, B., & Razack, M. (2020). Hydrodynamic characterization of Mugla karst aquifer using correlation and spectral analyses on the rainfall and springs water-level time series. Water, 12(1), 85. https://doi.org/10.3390/w12010085
Sanginabadi, H., Saghafian, B., & Delavar, M. (2019). Monitoring and assessing the characteristics of groundwater drought in aquifers with negative balance. Iran-Water Resources Research, 15(3), 155–166.
Sattari, M. T., Mirabbasi, R., Sushab, R. S., & Abraham, J. (2018). Prediction of groundwater level in Ardebil plain using support vector regression and M5 tree model. Groundwater, 56(4), 636–646. https://doi.org/10.1111/gwat.12620
Seo, Y., Kim, S., Kisi, O., & Singh, V. P. (2015). Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. Journal of Hydrology, 520, 224–243. https://doi.org/10.1016/j.jhydrol.2014.11.050
Sheikh, Z., Yazdani, M. R., & Nia, A. M. (2020). Spatiotemporal changes of 7-day low flow in Iran’s Namak Lake Basin: Impacts of climatic and human factors. Theoretical and Applied Climatology, 139(1), 57–73. https://doi.org/10.1007/s00704-019-02959-w
Shiri, J., Kisi, O., Yoon, H., Lee, K. K., & Nazemi, A. H. (2013). Predicting groundwater level fluctuations with meteorological effect implications—A comparative study among soft computing techniques. Computers & Geosciences, 56, 32–44. https://doi.org/10.1016/j.cageo.2013.01.007
Siebert, S., Burke, J., Faures, J. M., Frenken, K., Hoogeveen, J., Döll, P., & Portmann, F. T. (2010). Groundwater use for irrigation–a global inventory. Hydrology and Earth System Sciences, 14(10), 1863–1880. https://doi.org/10.5194/hess-14-1863-2010
Simão, M. L., Videiro, P. M., Silva, P. B. A., de Freitas Assad, L. P., & Sagrilo, L. V. S. (2020). Application of Taylor diagram in the evaluation of joint environmental distributions’ performances. Marine Systems & Ocean Technology, 15(3), 151–159. https://doi.org/10.1007/s40868-020-00081-5
Thomas, B. F., & Famiglietti, J. S. (2019). Identifying climate-induced groundwater depletion in GRACE observations. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-40155-y
Üneş, F., Maruf, A. G., & Taşar, B. (2019). Ground Water Level Estimation for Dörtyol region in HATAY. International Journal of Environment, Agriculture and Biotechnology, 4(3), 859–864. https://doi.org/10.22161/ijeab/4.3.36
Van Ty, T., & Van Hiep, H. (2018). Groundwater level prediction using artificial neural networks: A case study in Tra Noc industrial zone, Can Tho city, Vietnam. Journal of Water Resource and Protection, 10(09), 870–883. https://doi.org/10.4236/jwarp.2018.109050
Wen, X., Feng, Q., Yu, H., Wu, J., Si, J., Chang, Z., & Xi, H. (2015). Wavelet and adaptive neuro-fuzzy inference system conjunction model for groundwater level predicting in a coastal aquifer. Neural Computing and Applications, 26(5), 1203–1215. https://doi.org/10.1007/s00521-014-1794-7
Wirsing, K. (2020). Time frequency analysis of wavelet and Fourier transform. In Wavelet theory. IntechOpen.
Wu, W., Dandy, G. C., & Maier, H. R. (2014). Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environmental Modelling & Software, 54, 108–127. https://doi.org/10.1016/j.envsoft.2013.12.016
Xu, Y., Mo, X., Cai, Y., & Li, X. (2005). Analysis on groundwater table drawdown by land use and the quest for sustainable water use in the Hebei Plain in China. Agricultural Water Management, 75(1), 38–53. https://doi.org/10.1016/j.agwat.2004.12.002
Yazdi, A. A. S., & Khaneiki, M. L. (2016). Qanat knowledge: Construction and maintenance. Springer.
Zare, M., & Koch, M. (2018). Groundwater level fluctuations simulation and prediction by ANFIS-and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: Application to the Miandarband plain. Journal of Hydro-Environment Research, 18, 63–76. https://doi.org/10.1016/j.jher.2017.11.004
Zeng, Y., Xie, Z., & Zou, J. (2017). Hydrologic and climatic responses to global anthropogenic groundwater extraction. Journal of Climate, 30(1), 71–90. https://doi.org/10.1175/JCLI-D-16-0209.1
Zhang, J., Zhang, X., Niu, J., Hu, B. X., Soltanian, M. R., Qiu, H., & Yang, L. (2019). Prediction of groundwater level in seashore reclaimed land using wavelet and artificial neural network-based hybrid model. Journal of Hydrology, 577, 123948. https://doi.org/10.1016/j.jhydrol.2019.123948
