Estimating litchi flower number using a multicolumn convolutional neural network based on a density map

Jiaquan Lin1, Jun Li2, Zhou Yang3,4, Huazhong Lu3,5, Yue Ding2, Huajun Cui2
1South China Agricultural University
2College of Engineering, South China Agricultural University, Guangzhou, China
3Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou, China
4Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying University, Meizhou, China
5Guangdong Academy of Agricultural Sciences, Guangzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adamsen, F. J., Coffelt, T. A., Nelson, J. M., Barnes, E. M., & Rice, R. C. (2000). Method for using images from a color digital camera to estimate flower number. Crop Science, 40(3), 704–709. https://doi.org/10.2135/cropsci2000.403704x

Aggelopoulou, A. D., Bochtis, D., Fountas, S., Swain, K. C., Gemtos, T. A., & Nanos, G. D. (2011). Yield prediction in apple orchards based on image processing. Precision Agriculture, 12(3), 448–456. https://doi.org/10.1007/s11119-010-9187-0

Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint. arXiv:2004.10934

Boominathan, L., Kruthiventi, S. S., & Babu, R. V. (2016). CrowdNet: A deep convolutional network for dense crowd counting. In Proceedings of the 24th ACM international conference on Multimedia. https://doi.org/10.1145/2964284.2967300

Cai, C., Chen, J., Ou, L., Xi, X., & Sun, Q. (2011). Study on Litchi blooming habits. Guangdong Agricultural Sciences, 38(21), 20–24. https://doi.org/10.16768/j.issn.1004-874x.2011.21.059

Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition (3642–3649). https://doi.org/10.1109/CVPR.2012.6248110

Comas, A., Valente, J., & Kooistra, L. (2019). Automatic apple tree blossom estimation from UAV rgb imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W13, 631–635. https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019

Dias, P. A., Tabb, A., & Medeiros, H. (2018). Apple flower detection using deep convolutional networks. Computers in Industry, 99, 17–28. https://doi.org/10.1016/j.compind.2018.03.010

Farjon, G., Krikeb, O., Hillel, A. B., & Alchanatis, V. (2020). Detection and counting of flowers on apple trees for better chemical thinning decisions. Precision Agriculture, 21, 503–521. https://doi.org/10.1007/s11119-019-09679-1

Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F., Wiesbeck, W., & Dietmayer, K. (2021). Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.2972974

Hočevar, M., Širok, B., Godeša, T., & Stopar, M. (2014). Flowering estimation in apple orchards by image analysis. Precision Agriculture, 15(4), 466–478. https://doi.org/10.1007/s11119-013-9341-6

Horton, R., Cano, E., Bulanon, D., & Fallahi, E. (2017). Peach flower monitoring using aerial multispectral imaging. Journal of Imaging. https://doi.org/10.3390/jimaging3010002

Huang, X., & Chen, H. (2014). Studies on shoot, flower and fruit development in litchi and strategies for improved litchi production. Acta Horticulturae, 1029, 127–136. https://doi.org/10.17660/ActaHortic.2014.1029.14

Jiang, S., Xu, H., Wang, H., Hu, G., Li, J., Chen, H., & Huang, X. (2012). A comparison of the costs of flowering in “Feizixiao” and “Baitangying” litchi. Scientia Horticulturae, 148, 118–125. https://doi.org/10.1016/j.scienta.2012.09.035

Kentaro, W. (2016) labelme: Image polygonal annotation with python. Git Code. Retrieved from https://github.com/wkentaro/labelme

Koen, B. V. (1988). Toward a definition of the engineering method. European Journal of Engineering Education, 13(3), 307–315. https://doi.org/10.1080/03043798808939429

Lempitsky, V., & Zisserman, A. (2010). Learning to count objects in images. Advances in Neural Information Processing Systems, 23, 1324–1332. https://doi.org/10.5555/2997189.2997337

Li, Y., Zhang, X., & Chen, D. (2018). CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (1091–1100). https://doi.org/10.1109/CVPR.2018.00120

Lin, P., Lee, W. S., Chen, Y. M., Peres, N., & Fraisse, C. (2020). A deep-level region-based visual representation architecture for detecting strawberry flowers in an outdoor field. Precision Agriculture, 21, 387–402. https://doi.org/10.1007/s11119-019-09673-7

Link, H. (2000). Significance of flower and fruit thinning on fruit quality. Plant Growth Regulation, 31(1–2), 17–26. https://doi.org/10.1023/A:1006334110068

Liu, S., Li, X., Wu, H., Xin, B., Tang, J., Petrie, P. R., & Whitty, M. (2018). A robust automated flower estimation system for grape vines. Biosystems Engineering, 172, 110–123. https://doi.org/10.1016/j.biosystemseng.2018.05.009

Liu, Y., Wang, K. J., & Xie, R. J. (2016). Estimating the number of apple tree flowers based on hyperspectral information of a canopy. Scientia Agricultura Sinica, 49(18), 3608–3617. https://doi.org/10.3864/j.issn.0578-1752.2016.18.015

Luo, J., He, F., Wang, X., Hu, F., Wang, Z., & Li, J. (2019). Analyzing the physiological causes of the chemical combined with hand and machine flower-thinning technique to increase Feizixiao litchi yield. South China Fruits, 48(01), 20–24. https://doi.org/10.13938/j.issn.1007-1431.20180126

Mavridou, E., Vrochidou, E., Papakostas, G. A., Pachidis, T., & Kaburlasos, V. G. (2019). Machine vision systems in precision agriculture for crop farming. Journal of Imaging, 5(12), 89. https://doi.org/10.3390/jimaging5120089

Qi, W., Chen, H., Luo, T., & Song, F. (2019). Development status, trend and suggestion of litchi industry in mainland China. Guangdong Agricultural Sciences, 46(10), 132–139. https://doi.org/10.16768/j.issn.1004-874X.2019.10.020

Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. Retrieved August 30, 2020, from https://arxiv.org/pdf/1804.02767.pdf

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28, 91–99.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data. https://doi.org/10.1186/s40537-019-0197-0

Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S., & Babu, R. V. (2017). An introduction to deep convolutional neural nets for computer vision. Deep Learning for Medical Image Analysis. https://doi.org/10.1016/B978-0-12-810408-8.00003-1

Thorp, K. R., & Dierig, D. A. (2011). Color image segmentation approach to monitor flowering in lesquerella. Industrial Crops and Products, 34(1), 1150–1159. https://doi.org/10.1016/j.indcrop.2011.04.002

Viola, P., Jones, M. J., & Snow, D. (2005). Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision, 63, 153–161. https://doi.org/10.1007/s11263-005-6644-8

Wu, Y., & Jiang, M. (2018). Face recognition system based on CNN and LBP features for classifier optimization and fusion. The Journal of China Universities of Posts and Telecommunications, 25(01), 37–47. https://doi.org/10.19682/j.cnki.1005-8885.2018.0004

Xiao, C., Zheng, L., & Sun, H. (2014). Estimation of the apple flowers based on aerial multispectral image. 2014 ASABE Annual International Meeting. https://doi.org/10.13031/aim.20141912593

Xu, R., Li, C., Paterson, A. H., Jiang, Y., Sun, S., & Robertson, J. S. (2018). Aerial images and convolutional neural network for cotton bloom detection. Frontiers in Plant Science, 8, 2235. https://doi.org/10.3389/fpls.2017.02235

Yang, B., Li, G., Yang, S., He, Z., Zhou, C., & Yao, L. (2015). Effect of application ratio of potassium over nitrogen on litchi fruit yield, quality, and storability. Hortscience a: Publication of the American Society for Horticultural Science, 50(6), 916–920. https://doi.org/10.21273/HORTSCI.50.6.916

Zeiler, M. D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q. V., Nguyen, P., Senior, A., Vanhoucke, V., Dean, J., & Hinton, G. E. (2013). On rectified linear units for speech processing. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (3517–3521). https://doi.org/10.1109/ICASSP.2013.6638312

Zhang, Y., Zhou, D., Chen, S., Gao, S., & Ma, Y. (2016). Single-image crowd counting via multi-column convolutional neural network. 2016 IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.70

Zhu, X. (2020). Analysis of suitable climate resources for the growth of high quality litchi in Yulin City. Journal of Agricultural Catastrophology, 10(03), 126–127. https://doi.org/10.19383/j.cnki.nyzhyj.2020.03.052