Estimating litchi flower number using a multicolumn convolutional neural network based on a density map
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adamsen, F. J., Coffelt, T. A., Nelson, J. M., Barnes, E. M., & Rice, R. C. (2000). Method for using images from a color digital camera to estimate flower number. Crop Science, 40(3), 704–709. https://doi.org/10.2135/cropsci2000.403704x
Aggelopoulou, A. D., Bochtis, D., Fountas, S., Swain, K. C., Gemtos, T. A., & Nanos, G. D. (2011). Yield prediction in apple orchards based on image processing. Precision Agriculture, 12(3), 448–456. https://doi.org/10.1007/s11119-010-9187-0
Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv preprint. arXiv:2004.10934
Boominathan, L., Kruthiventi, S. S., & Babu, R. V. (2016). CrowdNet: A deep convolutional network for dense crowd counting. In Proceedings of the 24th ACM international conference on Multimedia. https://doi.org/10.1145/2964284.2967300
Cai, C., Chen, J., Ou, L., Xi, X., & Sun, Q. (2011). Study on Litchi blooming habits. Guangdong Agricultural Sciences, 38(21), 20–24. https://doi.org/10.16768/j.issn.1004-874x.2011.21.059
Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. 2012 IEEE Conference on Computer Vision and Pattern Recognition (3642–3649). https://doi.org/10.1109/CVPR.2012.6248110
Comas, A., Valente, J., & Kooistra, L. (2019). Automatic apple tree blossom estimation from UAV rgb imagery. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, XLII-2/W13, 631–635. https://doi.org/10.5194/isprs-archives-XLII-2-W13-631-2019
Dias, P. A., Tabb, A., & Medeiros, H. (2018). Apple flower detection using deep convolutional networks. Computers in Industry, 99, 17–28. https://doi.org/10.1016/j.compind.2018.03.010
Farjon, G., Krikeb, O., Hillel, A. B., & Alchanatis, V. (2020). Detection and counting of flowers on apple trees for better chemical thinning decisions. Precision Agriculture, 21, 503–521. https://doi.org/10.1007/s11119-019-09679-1
Feng, D., Haase-Schütz, C., Rosenbaum, L., Hertlein, H., Glaeser, C., Timm, F., Wiesbeck, W., & Dietmayer, K. (2021). Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2020.2972974
Hočevar, M., Širok, B., Godeša, T., & Stopar, M. (2014). Flowering estimation in apple orchards by image analysis. Precision Agriculture, 15(4), 466–478. https://doi.org/10.1007/s11119-013-9341-6
Horton, R., Cano, E., Bulanon, D., & Fallahi, E. (2017). Peach flower monitoring using aerial multispectral imaging. Journal of Imaging. https://doi.org/10.3390/jimaging3010002
Huang, X., & Chen, H. (2014). Studies on shoot, flower and fruit development in litchi and strategies for improved litchi production. Acta Horticulturae, 1029, 127–136. https://doi.org/10.17660/ActaHortic.2014.1029.14
Jiang, S., Xu, H., Wang, H., Hu, G., Li, J., Chen, H., & Huang, X. (2012). A comparison of the costs of flowering in “Feizixiao” and “Baitangying” litchi. Scientia Horticulturae, 148, 118–125. https://doi.org/10.1016/j.scienta.2012.09.035
Kentaro, W. (2016) labelme: Image polygonal annotation with python. Git Code. Retrieved from https://github.com/wkentaro/labelme
Koen, B. V. (1988). Toward a definition of the engineering method. European Journal of Engineering Education, 13(3), 307–315. https://doi.org/10.1080/03043798808939429
Lempitsky, V., & Zisserman, A. (2010). Learning to count objects in images. Advances in Neural Information Processing Systems, 23, 1324–1332. https://doi.org/10.5555/2997189.2997337
Li, Y., Zhang, X., & Chen, D. (2018). CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (1091–1100). https://doi.org/10.1109/CVPR.2018.00120
Lin, P., Lee, W. S., Chen, Y. M., Peres, N., & Fraisse, C. (2020). A deep-level region-based visual representation architecture for detecting strawberry flowers in an outdoor field. Precision Agriculture, 21, 387–402. https://doi.org/10.1007/s11119-019-09673-7
Link, H. (2000). Significance of flower and fruit thinning on fruit quality. Plant Growth Regulation, 31(1–2), 17–26. https://doi.org/10.1023/A:1006334110068
Liu, S., Li, X., Wu, H., Xin, B., Tang, J., Petrie, P. R., & Whitty, M. (2018). A robust automated flower estimation system for grape vines. Biosystems Engineering, 172, 110–123. https://doi.org/10.1016/j.biosystemseng.2018.05.009
Liu, Y., Wang, K. J., & Xie, R. J. (2016). Estimating the number of apple tree flowers based on hyperspectral information of a canopy. Scientia Agricultura Sinica, 49(18), 3608–3617. https://doi.org/10.3864/j.issn.0578-1752.2016.18.015
Luo, J., He, F., Wang, X., Hu, F., Wang, Z., & Li, J. (2019). Analyzing the physiological causes of the chemical combined with hand and machine flower-thinning technique to increase Feizixiao litchi yield. South China Fruits, 48(01), 20–24. https://doi.org/10.13938/j.issn.1007-1431.20180126
Mavridou, E., Vrochidou, E., Papakostas, G. A., Pachidis, T., & Kaburlasos, V. G. (2019). Machine vision systems in precision agriculture for crop farming. Journal of Imaging, 5(12), 89. https://doi.org/10.3390/jimaging5120089
Qi, W., Chen, H., Luo, T., & Song, F. (2019). Development status, trend and suggestion of litchi industry in mainland China. Guangdong Agricultural Sciences, 46(10), 132–139. https://doi.org/10.16768/j.issn.1004-874X.2019.10.020
Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. Retrieved August 30, 2020, from https://arxiv.org/pdf/1804.02767.pdf
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, 28, 91–99.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data. https://doi.org/10.1186/s40537-019-0197-0
Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S., & Babu, R. V. (2017). An introduction to deep convolutional neural nets for computer vision. Deep Learning for Medical Image Analysis. https://doi.org/10.1016/B978-0-12-810408-8.00003-1
Thorp, K. R., & Dierig, D. A. (2011). Color image segmentation approach to monitor flowering in lesquerella. Industrial Crops and Products, 34(1), 1150–1159. https://doi.org/10.1016/j.indcrop.2011.04.002
Viola, P., Jones, M. J., & Snow, D. (2005). Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision, 63, 153–161. https://doi.org/10.1007/s11263-005-6644-8
Wu, Y., & Jiang, M. (2018). Face recognition system based on CNN and LBP features for classifier optimization and fusion. The Journal of China Universities of Posts and Telecommunications, 25(01), 37–47. https://doi.org/10.19682/j.cnki.1005-8885.2018.0004
Xiao, C., Zheng, L., & Sun, H. (2014). Estimation of the apple flowers based on aerial multispectral image. 2014 ASABE Annual International Meeting. https://doi.org/10.13031/aim.20141912593
Xu, R., Li, C., Paterson, A. H., Jiang, Y., Sun, S., & Robertson, J. S. (2018). Aerial images and convolutional neural network for cotton bloom detection. Frontiers in Plant Science, 8, 2235. https://doi.org/10.3389/fpls.2017.02235
Yang, B., Li, G., Yang, S., He, Z., Zhou, C., & Yao, L. (2015). Effect of application ratio of potassium over nitrogen on litchi fruit yield, quality, and storability. Hortscience a: Publication of the American Society for Horticultural Science, 50(6), 916–920. https://doi.org/10.21273/HORTSCI.50.6.916
Zeiler, M. D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le, Q. V., Nguyen, P., Senior, A., Vanhoucke, V., Dean, J., & Hinton, G. E. (2013). On rectified linear units for speech processing. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (3517–3521). https://doi.org/10.1109/ICASSP.2013.6638312
Zhang, Y., Zhou, D., Chen, S., Gao, S., & Ma, Y. (2016). Single-image crowd counting via multi-column convolutional neural network. 2016 IEEE Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2016.70