Estimating economic thresholds for site-specific weed control using manual weed counts and sensor technology: An example based on three winter wheat trials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rajcan, 2001, Understanding maize-weed competition: Resource competition, light quality and the whole plant, Field Crops Research, 10.1016/S0378-4290(01)00159-9
Seitz, 2006, Herbizide fuer die Landwirtschaft: Chemische Unkrautbekämpfung, Chemie in unserer Zeit, 27, 112
Schwerdtle F Kemmer A Schulz H Gemeinschaftsversuche Baden-Württemberg 1969 Fachgruppe Pflanzenproduktion Stuttgart-Hohenheim 1969
Gerhards R Gemeinschaftsversuche Baden-Württemberg Berichte aus dem Fachgebiet Herbologie der Universität Hohenheim 2011
Giaquinta, 1992, An industry perspective on herbicide-tolerant crops, Weed Technol, 10.1017/S0890037X00035971
Gerhards, 2012, Using precision farming technology to quantify yield effects due to weed competition and herbicide application, Weed Res, 10.1111/j.1365-3180.2011.00893.x
Coble, 1992, The threshold concept and its application to weed science, Weed Technol, 10.1017/S0890037X00034552
Gerowitt, 1990, Weed economic thresholds in the F. R. Germany, Crop Protect, 10.1016/0261-2194(90)90001-N
Zanin, 1993, Estimation of economic thresholds for weed control in winter wheat, Weed Res, 10.1111/j.1365-3180.1993.tb01962.x
Garburg W Investigations to determine the economic thresholds and control thresholds for weeds in cereals Institut für Pflanzenpathologie und Pflanzenschutz der Georg-August-Universiät Göttingen
Beer E Determination of control thresholds and economic thresholds for monocotyledonous and dicotyledonous weeds in winter wheat and winter barley using data from governmental trials Institut für Pflanzenpathologie und Pflanzenschutz der Georg-August-Universiät Göttingen
Niemann, Schadschwellen bei der Unkrautbekämpfung, 257
Gerhards, 2010, Precision Crop Protection-the Challenge and Use of Heterogeneity, 1, 1
Auernhammer, 2001, Precision farming-The environmental challenge, Comput Electron Agric, 10.1016/S0168-1699(00)00153-8
Zhang, 2002, Precision agriculture-A worldwide overview, Comput Electron Agric, 10.1016/S0168-1699(02)00096-0
Adamchuk, 2011, Sensor fusion for precision agriculture, in, Sensor Fusion-Foundation and Applications
Ritter, 2008, An on-farm approach to quantify yield variation and to derive decision rules for site-specific weed management, Precision Agric, 10.1007/s11119-008-9061-5
Corwin, 2005, Apparent soil electrical conductivity measurements in agriculture, Comput Electron Agric, 46, 11, 10.1016/j.compag.2004.10.005
Delin, 2005, Management zones classified with respect to drought and waterlogging, Precision Agric, 10.1007/s11119-005-2325-4
Leithold, 2006, On farm research-A novel experimental design for precision farming, J Plant Dis Protect, XX, 157
Weis, 2008, Precision farming for weed management: Techniques, Gesunde Pflanzen, 10.1007/s10343-008-0195-1
Rumpf, 2012, Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine, Comput Electron Agric, 10.1016/j.compag.2011.10.018
Weis, 2012, Herbicides-Environmental Impact Studies and Management Approaches
Gutjahr, 2009, European Federation for Information Technology in Agriculture (EFITA), conference 2009, 557
Gutjahr, 2011, Precision Agriculture 2011, 203
Keller, 2011, Precision Agriculture 2011, 491
Piepho, 2004, A mixed modelling approach for randomized experiments with repeated measures, J Agron Crop Sci, 10.1111/j.1439-037X.2004.00097.x
Akaike, 1974, A new look at the statistical model identification, IEEE Transact Auto Contr AC-19, 10.1109/TAC.1974.1100705
R Development Core Team R: A Language and Environment for Statistical Computing Vienna Austria 2008
KTBL Faustzahlen für die Landwirtschaft Achilles W Döhler H Frisch J Fröba N Harder H Hüter J et al
Wilson, 1990, Predicting the growth and competitive effects of annual weeds in wheat, Weed Res, 10.1111/j.1365-3180.1990.tb01704.x
Weis, 2009, Book of Abstracts of the European Conference on Precision Agriculture (ECPA) 2009, 349
Eef, 2011, Automatic identification of crop and weed species with chlorophyll fluorescence induction curves, Precision Agric
Burgos-Artizzu, 2009, Improving weed pressure assessment using digital images from an experience-based reasoning approach, Comput Electron Agric, 10.1016/j.compag.2008.09.001
Burks, 2000, Classification of weed species using color texture features and discriminant analysis, Trans Am Soc Agric Engin, 43, 441, 10.13031/2013.2723