Estimating confidence intervals for spatial hierarchical mixed-effects models with post-stratification

Spatial Statistics - Tập 51 - Trang 100670 - 2022
Yuan Hong1, Bo Cai1, Jan M. Eberth1,2, Alexander C. McLain1
1Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, United States of America
2South Carolina Rural Health Research Center, Arnold School of Public Health, University of South Carolina, Columbia, United States of America

Tài liệu tham khảo

Antal, 2011, A direct bootstrap method for complex sampling designs from a finite population, J. Amer. Statist. Assoc., 106, 534, 10.1198/jasa.2011.tm09767 Antal, 2011, Simple random sampling with over-replacement, J. Statist. Plann. Inference, 141, 597, 10.1016/j.jspi.2010.06.029 Buckland, 1984, Monte Carlo confidence intervals, Biometrics, 40, 811, 10.2307/2530926 Chatterjee, 2008, Parametric bootstrap approximation to the distribution of EBLUP and related prediction intervals in linear mixed models, Ann. Statist., 36, 1221, 10.1214/07-AOS512 Diciccio, 1992, More accurate confidence intervals in exponential families, Biometrika, 79, 231, 10.1093/biomet/79.2.231 Dong, 2021, Modeling and presentation of vaccination coverage estimates using data from household surveys, Vaccine, 39, 2584, 10.1016/j.vaccine.2021.03.007 Dwyer-Lindgren, 2017, Trends and patterns of differences in chronic respiratory disease mortality among US counties, 1980–2014, JAMA, 318, 1136, 10.1001/jama.2017.11747 Eberth, 2018, Estimating county-level tobacco use and exposure in South Carolina: a spatial model-based small area estimation approach, Ann. Epidemiol., 28, 481, 10.1016/j.annepidem.2018.03.015 Efron, 1987, Better bootstrap confidence intervals, J. Amer. Statist. Assoc., 82, 171, 10.1080/01621459.1987.10478410 Efron, 1992, Bootstrap methods: another look at the jackknife, 569 Eke, 2016, Predicting periodontitis at state and local levels in the united states, J. Dent. Res., 95, 515, 10.1177/0022034516629112 Gelman, 1997, Poststratification into many categories using hierarchical logistic regression, Surv. Methodol., 23, 127 Hall, 2006, On parametric bootstrap methods for small area prediction, J. R. Stat. Soc. Ser. B Stat. Methodol., 68, 221, 10.1111/j.1467-9868.2006.00541.x Hao, 2015, Ozone, fine particulate matter, and chronic lower respiratory disease mortality in the United States, Am. J. Respir. Crit. Care Med., 192, 337, 10.1164/rccm.201410-1852OC Holt, 1979, Post stratification, J. R. Stat. Soc. Ser. A (Gen.), 142, 33, 10.2307/2344652 Jiang, 2001, Empirical best prediction for small area inference with binary data, Ann. Inst. Statist. Math., 53, 217, 10.1023/A:1012410420337 Jiang, 2006, Mixed model prediction and small area estimation, Test, 15, 1, 10.1007/BF02595419 Jiang, 2002, A unified jackknife theory for empirical best prediction with M-estimation, Ann. Statist., 30, 1782, 10.1214/aos/1043351257 Lahiri, 2003, On the impact of bootstrap in survey sampling and small-area estimation, Statist. Sci., 199 Little, 1993, Post-stratification: a modeler’s perspective, J. Amer. Statist. Assoc., 88, 1001, 10.1080/01621459.1993.10476368 Molina, 2009, Bootstrap for estimating the MSE of the spatial EBLUP, Comput. Statist., 24, 441, 10.1007/s00180-008-0138-4 Pfeffermann, 1996, The use of sampling weights for survey data analysis, Stat. Methods Med. Res., 5, 239, 10.1177/096228029600500303 Pfeffermann, 2012, Empirical bootstrap bias correction and estimation of prediction mean square error in small area estimation, Biometrika, 99, 457, 10.1093/biomet/ass010 Preacher, 2012, Advantages of Monte Carlo confidence intervals for indirect effects, Commun. Methods Meas., 6, 77, 10.1080/19312458.2012.679848 Rao, 2014, Small-area estimation, Wiley StatsRef: Stat. Ref. Online, 1, 1 Rasmussen, 2004, Modelling of discrete spatial variation in epidemiology with SAS using GLIMMIX, Comput. Methods Programs Biomed., 76, 83, 10.1016/j.cmpb.2004.03.003 Valliant, 1993, Poststratification and conditional variance estimation, J. Amer. Statist. Assoc., 88, 89 Zhang, 2014, Multilevel regression and poststratification for small-area estimation of population health outcomes: a case study of chronic obstructive pulmonary disease prevalence using the behavioral risk factor surveillance system, Am. J. Epidemiol., 179, 1025, 10.1093/aje/kwu018 Zhang, 2015, Validation of multilevel regression and poststratification methodology for small area estimation of health indicators from the behavioral risk factor surveillance system, Am. J. Epidemiol., 182, 127, 10.1093/aje/kwv002