Estimating cobalt exposure in respirable dust from cobalt in inhalable dust
Tài liệu tham khảo
2016, Technische Regeln für Gefahrstoffe: ermitteln und Beurteilen der Gefährdungen bei Tätigkeiten mit Gefahrstoffen: inhalative Exposition (TRGS 402), GMBl, 43
2017, Begründung zu Cobalt und Verbindungen in TRGS 910. Cobalt-Metall und anorganische Cobalt-Verbindungen (gilt nur für A-Staub), GMBl, 12
2017, Technische Regeln für Gefahrstoffe: Tätigkeiten mit krebserzeugenden Metallen und ihren Verbindungen (TRGS 561), GMBl, 43
2021, Technische Regeln für Gefahrstoffe: Risikobezogenes Maßnahmenkonzept für Tätigkeiten mit krebserzeugenden Gefahrstoffen (TRGS 910), GMBl, 12, 1
ASM, 2000
Barceloux, 1999, Cobalt, J. Toxicol. Clin. Toxicol., 37, 201, 10.1081/CLT-100102420
Broding, 2009, Comparison between exhaled breath condensate analysis as a marker for cobalt and tungsten exposure and biomonitoring in workers of a hard metal alloy processing plant, Int. Arch. Occup. Environ. Health, 82, 565, 10.1007/s00420-008-0390-5
Chatterjee, 1986, Influential observations, high leverage points, and Outliers in linear regression, Stat. Sci., 1, 379
Cherrie, 1999, The effect of room size and general ventilation on the relationship between near and far-field concentrations, Appl. Occup. Environ. Hyg, 14, 539, 10.1080/104732299302530
Coenen, 1981, Beschreibung der Erfassungs- und Durchgangsfunktion von Partikeln bei der Atmung - messtechnische Realisierung, Staub Reinhalt. Luft, 41, 472
Cook, 1982
Cossey, 1987, A Higher-Flow Rate Cyclone for determination of respirable dust, Ann. Occup. Hyg., 31, 39
2021
DFG, 2020
Draper, 1998, 10.1002/9781118625590
1995
2010
2014
2018
2021
Gabriel, 2010, The MGU - a monitoring system for the collection and documentation of valid workplace exposure data, Gefahrst. Reinhalt. Luft, 1/2, 43
Haviland, 1990, 9, 363
Hilton, 2006, Statnote 6: post-hoc ANOVA tests, Microbiologist, 34
2006
Janssen, 2017, 10.1007/978-3-662-53477-9
Kendzia, 2017, Modelling of occupational exposure to inhalable nickel compounds, J. Expo. Sci. Environ. Epidemiol., 27, 427, 10.1038/jes.2016.80
Kim, 2015, Exposure assessment of airborne cobalt in manufacturing industries, J. Korean Soc. Occup. Environ. Hygiene, 25, 166, 10.15269/JKSOEH.2015.25.2.166
Klasson, 2016, Occupational exposure to cobalt and tungsten in the Swedish hard metal industry: air concentrations of particle mass, number, and surface area, Ann. Occup. Hyg., 60, 684, 10.1093/annhyg/mew023
Klasson, 2017, Biological monitoring of dermal and air exposure to cobalt at a Swedish hard metal production plant: does dermal exposure contribute to uptake?, Contact Dermatitis, 77, 201, 10.1111/cod.12790
Kleinbaum, 2014
Koch, 1999, Design and performance of a new personal aerosol monitor, Aerosol. Sci. Technol., 2–3, 231, 10.1080/027868299304282
Kraus, 2001, Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds, Occup. Environ. Med., 58, 631, 10.1136/oem.58.10.631
Lison, 1996, Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease), Crit. Rev. Toxicol., 26, 585, 10.3109/10408449609037478
Ljunggren, 2019, Biomonitoring of metal exposure during additive manufacturing (3D printing), Health Saf. Work, 10, 518, 10.1016/j.shaw.2019.07.006
MacFarland, 2016, 10.1007/978-3-319-30634-6
Mattenklott, 2009, Stäube an Arbeitsplätzen und in der Umwelt - Vergleich der Begriffsbestimmungen, Gefahrst. Reinhalt. Luft, 4, 127
Mattenklott, 2011, Probenahme und analytische Bestimmung von granulären biobeständigen Stäuben (GBS), Gefahrst. Reinhalt. Luft, 10, 425
Pitzke, 2019, Metallanalytik im Wandel ihrer Anforderungen, Gefahrst. Reinhalt. Luft, 4, 99, 10.37544/0949-8036-2019-04-9
Pitzke, 2020
Purdham, 1993, The evaluation of exposure of printing trade employees to polycyclic aromatic hydrocarbons, Ann. Occup. Hyg., 37, 35
Riediger, 2001
Rumpf, 1976, Mechanismen der Haftverstärkung bei der Partikelhaftung durch plastisches Verformen, Sintern und viskoelastisches Fließen, Chem. Ing. Tech., 48, 300, 10.1002/cite.330480408
Sachs, 2004
Shirakawa, 1990, Hard metal asthma: cross immunological and respiratory reactivity between cobalt and nickel?, Thorax, 45, 267, 10.1136/thx.45.4.267
Siekmann, 1998
Stefaniak, 2009, Characterization of exposures among cemented tungsten caride workers. Part I: size-fractionated exposures to airborne cobalt and tungsten particles, J. Expo. Sci. Environ. Epidemiol., 19, 475, 10.1038/jes.2008.37
Suh, 2016, Inhalation cancer risk assessment of cobalt metal, Regul. Toxicol. Pharmacol., 74, 10.1016/j.yrtph.2016.05.009
Swennen, 1994, Epidemiological survey of workers exposed to cobalt Oxides, cobalt salts, and cobalt metal, Br. J. Ind. Med., 50, 835
Van Cutsem, 1987, Combined asthma and alveolitis induced by cobalt in a diamond polisher, Eur. J. Respir. Dis., 70, 54
Wild, 2009, Lung cancer and exposure to metals: the epidemiological evidence, Methods Mol. Biol., 472, 139, 10.1007/978-1-60327-492-0_6
Wild, 2000, Lung cancer mortality in a site producing hard metals, Occup. Environ. Med., 57, 568, 10.1136/oem.57.8.568
Wippich, 2021, Estimating nickel exposure in respirable dust from nickel in inhalable dust, Int. J. Hyg Environ. Health, 10.1016/j.ijheh.2021.113838
Wippich, 2020, Estimating respirable dust exposure from inhalable dust exposure, Ann. Work Exposures Health, 64, 430, 10.1093/annweh/wxaa016
Zhang, 2013, Workplace exposure to nanoparticles from gas metal arc welding process, J. Nanoparticle Res., 15, 14, 10.1007/s11051-013-2016-4
Zimmer, 2002, The influence of metallurgy on the formation of welding aerosols, J. Environ. Monit., 4, 628, 10.1039/B202337G