Estimating cobalt exposure in respirable dust from cobalt in inhalable dust

Cornelia Wippich1, Dorothea Koppisch1, Katrin Pitzke1, Dietmar Breuer1
1Institute for Occupational Safety and Health of the German Social Accident Insurance, Alte Heerstraße 111, 53757, Sankt Augustin, Germany

Tài liệu tham khảo

2016, Technische Regeln für Gefahrstoffe: ermitteln und Beurteilen der Gefährdungen bei Tätigkeiten mit Gefahrstoffen: inhalative Exposition (TRGS 402), GMBl, 43 2017, Begründung zu Cobalt und Verbindungen in TRGS 910. Cobalt-Metall und anorganische Cobalt-Verbindungen (gilt nur für A-Staub), GMBl, 12 2017, Technische Regeln für Gefahrstoffe: Tätigkeiten mit krebserzeugenden Metallen und ihren Verbindungen (TRGS 561), GMBl, 43 2021, Technische Regeln für Gefahrstoffe: Risikobezogenes Maßnahmenkonzept für Tätigkeiten mit krebserzeugenden Gefahrstoffen (TRGS 910), GMBl, 12, 1 ASM, 2000 Barceloux, 1999, Cobalt, J. Toxicol. Clin. Toxicol., 37, 201, 10.1081/CLT-100102420 Broding, 2009, Comparison between exhaled breath condensate analysis as a marker for cobalt and tungsten exposure and biomonitoring in workers of a hard metal alloy processing plant, Int. Arch. Occup. Environ. Health, 82, 565, 10.1007/s00420-008-0390-5 Chatterjee, 1986, Influential observations, high leverage points, and Outliers in linear regression, Stat. Sci., 1, 379 Cherrie, 1999, The effect of room size and general ventilation on the relationship between near and far-field concentrations, Appl. Occup. Environ. Hyg, 14, 539, 10.1080/104732299302530 Coenen, 1981, Beschreibung der Erfassungs- und Durchgangsfunktion von Partikeln bei der Atmung - messtechnische Realisierung, Staub Reinhalt. Luft, 41, 472 Cook, 1982 Cossey, 1987, A Higher-Flow Rate Cyclone for determination of respirable dust, Ann. Occup. Hyg., 31, 39 2021 DFG, 2020 Draper, 1998, 10.1002/9781118625590 1995 2010 2014 2018 2021 Gabriel, 2010, The MGU - a monitoring system for the collection and documentation of valid workplace exposure data, Gefahrst. Reinhalt. Luft, 1/2, 43 Haviland, 1990, 9, 363 Hilton, 2006, Statnote 6: post-hoc ANOVA tests, Microbiologist, 34 2006 Janssen, 2017, 10.1007/978-3-662-53477-9 Kendzia, 2017, Modelling of occupational exposure to inhalable nickel compounds, J. Expo. Sci. Environ. Epidemiol., 27, 427, 10.1038/jes.2016.80 Kim, 2015, Exposure assessment of airborne cobalt in manufacturing industries, J. Korean Soc. Occup. Environ. Hygiene, 25, 166, 10.15269/JKSOEH.2015.25.2.166 Klasson, 2016, Occupational exposure to cobalt and tungsten in the Swedish hard metal industry: air concentrations of particle mass, number, and surface area, Ann. Occup. Hyg., 60, 684, 10.1093/annhyg/mew023 Klasson, 2017, Biological monitoring of dermal and air exposure to cobalt at a Swedish hard metal production plant: does dermal exposure contribute to uptake?, Contact Dermatitis, 77, 201, 10.1111/cod.12790 Kleinbaum, 2014 Koch, 1999, Design and performance of a new personal aerosol monitor, Aerosol. Sci. Technol., 2–3, 231, 10.1080/027868299304282 Kraus, 2001, Exposure assessment in the hard metal manufacturing industry with special regard to tungsten and its compounds, Occup. Environ. Med., 58, 631, 10.1136/oem.58.10.631 Lison, 1996, Human toxicity of cobalt-containing dust and experimental studies on the mechanism of interstitial lung disease (hard metal disease), Crit. Rev. Toxicol., 26, 585, 10.3109/10408449609037478 Ljunggren, 2019, Biomonitoring of metal exposure during additive manufacturing (3D printing), Health Saf. Work, 10, 518, 10.1016/j.shaw.2019.07.006 MacFarland, 2016, 10.1007/978-3-319-30634-6 Mattenklott, 2009, Stäube an Arbeitsplätzen und in der Umwelt - Vergleich der Begriffsbestimmungen, Gefahrst. Reinhalt. Luft, 4, 127 Mattenklott, 2011, Probenahme und analytische Bestimmung von granulären biobeständigen Stäuben (GBS), Gefahrst. Reinhalt. Luft, 10, 425 Pitzke, 2019, Metallanalytik im Wandel ihrer Anforderungen, Gefahrst. Reinhalt. Luft, 4, 99, 10.37544/0949-8036-2019-04-9 Pitzke, 2020 Purdham, 1993, The evaluation of exposure of printing trade employees to polycyclic aromatic hydrocarbons, Ann. Occup. Hyg., 37, 35 Riediger, 2001 Rumpf, 1976, Mechanismen der Haftverstärkung bei der Partikelhaftung durch plastisches Verformen, Sintern und viskoelastisches Fließen, Chem. Ing. Tech., 48, 300, 10.1002/cite.330480408 Sachs, 2004 Shirakawa, 1990, Hard metal asthma: cross immunological and respiratory reactivity between cobalt and nickel?, Thorax, 45, 267, 10.1136/thx.45.4.267 Siekmann, 1998 Stefaniak, 2009, Characterization of exposures among cemented tungsten caride workers. Part I: size-fractionated exposures to airborne cobalt and tungsten particles, J. Expo. Sci. Environ. Epidemiol., 19, 475, 10.1038/jes.2008.37 Suh, 2016, Inhalation cancer risk assessment of cobalt metal, Regul. Toxicol. Pharmacol., 74, 10.1016/j.yrtph.2016.05.009 Swennen, 1994, Epidemiological survey of workers exposed to cobalt Oxides, cobalt salts, and cobalt metal, Br. J. Ind. Med., 50, 835 Van Cutsem, 1987, Combined asthma and alveolitis induced by cobalt in a diamond polisher, Eur. J. Respir. Dis., 70, 54 Wild, 2009, Lung cancer and exposure to metals: the epidemiological evidence, Methods Mol. Biol., 472, 139, 10.1007/978-1-60327-492-0_6 Wild, 2000, Lung cancer mortality in a site producing hard metals, Occup. Environ. Med., 57, 568, 10.1136/oem.57.8.568 Wippich, 2021, Estimating nickel exposure in respirable dust from nickel in inhalable dust, Int. J. Hyg Environ. Health, 10.1016/j.ijheh.2021.113838 Wippich, 2020, Estimating respirable dust exposure from inhalable dust exposure, Ann. Work Exposures Health, 64, 430, 10.1093/annweh/wxaa016 Zhang, 2013, Workplace exposure to nanoparticles from gas metal arc welding process, J. Nanoparticle Res., 15, 14, 10.1007/s11051-013-2016-4 Zimmer, 2002, The influence of metallurgy on the formation of welding aerosols, J. Environ. Monit., 4, 628, 10.1039/B202337G