Estimating ambient visibility in the presence of fog: a deep convolutional neural network approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Christina M (2019) Heavy fog causes 20-plus vehicle collision in Texas. https://edition.cnn.com/2019/01/01/us/austin-20-vehicle-crash/index.html . Accessed 14 March 2019
Napoli, DS (2018) Heavy early-morning fog causes fatal accident in north Harris County. https://www.click2houston.com/news/heavy-early-morning-fog-causes-fatal-accident . Accessed March 14 2019
Heavy fog a factor in fatal crash involving up to 29 vehicles in Verona, https://fox6now.com/2018/02/12/fatal-dane-county-highway-crash-involves-about-20-vehicles/ . Accessed March 14 2019
Heavy fog leads to fatal crash in Wisconsin. https://www.kcrg.com/content/news/Heavy-fog-leads-to-fatal-crash-in-Wisconsin-473867243.html . Accessed March 14 2019
Dubai police record 564 accidents due to fog on Thursday, https://www.thenational.ae/uae/dubai-police-record-564-accidents-due-to-fog-on-thursday-1.703044 . Accessed March 14, 2019
Hamilon B, Tefft B, Arnold L, Grabowski J (2014) Hidden highways: fog and traffic crashes on America’s roads, 2014 AAA Foundation for Traffic Safety Report. July 2014:1–24
Chaabani H, Kamoun F, Bargaoui H, Outay F, Yasar A (2017) A neural network approach to visibility range estimation under foggy weather conditions. Procedia Comput Sci 113:466–471. https://doi.org/10.1016/j.procs.2017.08.304
Hautière N, Bossu J, Bigorgne E, Hiblot N, Boubezoul, Lusett B, Aubert D (2009) Sensing visibility range at low cost in the SAFESPOT roadside unit. ITS World Congress (ITS’09), Stockholm, pp 1–8
Meteorological office: observers’ handbook. Third edition, London: HMSO, 1969
Grosshans H, Kristensson E, Szász RZ, Berrocal E (2015) Prediction and measurement of the local extinction coefficient in sprays for 3D simulation/experiment data comparison. Int J Multiphase Flow 72:218–232. https://doi.org/10.1016/j.ijmultiphaseflow.2015.01.009
IEC (1987) International lighting vocabulary. CIE 17:4–1987 The International Commission on Illumination
Perrin J, Martin P, Cottrell W (2000) Effects of variable speed limit signs on driver behavior during inclement weather. Compendium for the Institute of Transportation Engineers (ITE). 70th Annual Meeting, Nashville, Tennessee
Kwon T (1998) An automatic visibility measurement system based on video cameras. Publication MN/RC-1998-25. Minnesota Department of Transportation: 1-62
Baumer D, Versick S, Vogel B (2008) Determination of the visibility using a digital panorama camera. Atmos Environ 42(11):2593–2602. https://doi.org/10.1016/j.atmosenv.2007.06.024
Abdel-Aty M, Ahmed MM, Lee JSQ, Abuzwidah M (2012) Synthesis of visibility detection systems. University of Central Florida Report, BDK78 977-11: 1-130, http://www.fdot.gov/research/Completed_Proj/Summary_TE/FDOT-BDK78-977-11-rpt.pdf . Accessed 14 January 2018
Hautiere N, Labayrade R, Aubert D (2006) Estimation of the visibility distance by stereovision: a generic approach. IEICE Trans on Information and Systems 89(7):2084–2091
Guo F, Peng H, Tang J, Zou B, Tang C (2016) Visibility detection approach to road scene foggy images. KSII Trans on Internet and Information Systems 10(9):4419–4441. https://doi.org/10.3837/tiis.2016.09.022
Hautiere N, Tarel JP, Lavenant J, Aubert D (2006) Automatic fog detection and estimation of visibility distance through the use of onboard camera. Mach Vis Appl 17(1):8–20. https://doi.org/10.1007/s00138-005-0011-1
Bronte S, Bergasa LM., Alcantarilla PF (2009) Fog detection system based on computer vision techniques. 12th International IEEE Conference on Intelligent Transportation Systems: 1–6 https://doi.org/10.1109/ITSC.2009.5309842.
Hautière N, Bigorgne E, Aubert D (2008) Daytime visibility range monitoring through use of a roadside camera. IEEE Intelligent Vehicles Symposium, Eindhoven, pp 470–475. https://doi.org/10.1109/IVS.2008.4621200
Hautière N, Bigorgne E, Bossu J, Aubert D (2008) Meteorological conditions processing for vision-based traffic monitoring. In: The Eighth International Workshop on Visual Surveillance -VS2008. Marseille, France, pp 1–8
Boussard C, Hautière N, D’andréa-Novel B (2008) Vehicle dynamics estimation for camera-based visibility distance estimation. IEEE/RSJ International Conference on Intelligent Robotics and Systems, Nice-France, pp 600–605
Hautière N, Labayrade R, Aubert D (2006) Real-time disparity contrast combination for onboard estimation of the visibility distances. IEEE Trans Intell Transp Syst 7(2):201–212. https://doi.org/10.1109/TITS.2006.874682
Gallen R, Cord A, Hautiére N, Aubert D (2011) Towards night fog detection through use of in-vehicle multipurpose cameras. IEEE Intelligent Vehicle Symposium, Baden-Baden, Germany, pp 399–404. https://doi.org/10.1109/IVS.2011.5940486
Wauben W, Roth M (2016) Exploration of fog detection and visibility estimation from camera images. WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, CIMO TECO, Madrid, Spain: 1-14
Hautiére N, Babari R, Dumont É, Brémond R, Paparoditis N (2010) Estimating meteorological visibility using cameras: a probabilistic model-driven approach. In: Kimmel R, Klette R, Sugimoto A (eds) Computer Vision – ACCV 2010, Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg, pp 243–254. https://doi.org/10.1007/978-3-642-19282-1_20
Budnik, M, Gutierrez-Gomez, EL, Safadi B, Quénot G (2015) Learned features versus engineered features for semantic video indexing. Proceedings of the 13th International Workshop on Content-Based Multimedia Indexing (CBMI), Prague, Czech Republic: 1-6
Chow TWS, Rahman MKM (2007) A new image classification technique using tree-structured regional features. Neurocomputing 70(4-6):1040–1050. https://doi.org/10.1016/j.neucom.2006.01.033
Zhang H, Fritts JE, Goldman SA( 2005) A fast texture feature extraction method for region-based image segmentation. Proc. SPIE 5685, Image and Video Communications and Processing 2005 Conference:1-12
Xu X, Shafin SH, Li Y, Hao HW (2014) A prototype system for atmospheric visibility estimation based on image analysis and learning. Journal of Information and Computational Science 11(3):4577–4585
Fan B, Kong Q, Wang X, Wang Z, Xiang S, Pan C, Fua P (2019) A performance evaluation of local features for image-based 3d reconstruction. IEEE Transactions on Image Processing:1-16
Ojala, T., Pietikäinen, M., Harwood,D., 1996. A comparative study of texture measures with classification based on featured distribution. Pattern Recogn 29 (1): 51–59. https://doi.org/10.1016/0031-3203(95)00067-4
Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 46(1):765–781. https://doi.org/10.1109/TSMCC.2011.2118750
Luo CH, Wen CY, Yuan CS, Liaw JL, Lo CC, Chiu SH (2005) Investigation of urban atmospheric visibility by high-frequency extraction: model development and field test. Atmos Environ 39:2545–2552. https://doi.org/10.1016/j.atmosenv.2005.01.023
Pavlic M, Rigoll G, Ilic S (2013) Classification of images in fog and fog-free scenes for use in vehicles. 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia: 1-6
Chen Z, Li J, Chen Q (2009) Real-time video detection of road visibility conditions. WRI World Congress on Computer Science and Information Engineering, Los Angeles, pp 472–476
Babari R, Hautière N, Dumont É, Paparoditis N, Misener J (2012) Visibility monitoring using conventional roadside cameras, emerging applications. Trans Res, part C : Emerg technol 22:17–28
Babari R, Hautière N, Dumont É, Brémond R, Paparoditis N (2011) A model-driven approach to estimate atmospheric visibility with ordinary cameras. Atmos Environ 45(30):5316–5324. https://doi.org/10.1016/j.atmosenv.2011.06.053
Hallowell R, Matthews M, Pisano P (2007) An automated visibility detection algorithm utilizing camera imagery. 23rd Conference on Interactive Information and Processing Systems for Meteorology, Oceanography and Hydrology, San Antonio, TX, Amer. Meteor. Soc: 1-15
Tian DP (2013) A review on image feature extraction and representation techniques. Int J Multimed Ubiquitous Eng 8(4):385–396
Nithin K, Sivakumar B (2015) Generic feature learning in computer vision. Proceedings of the second international symposium on computer vision and Internet. Procedia Computer Science 58:202–209
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Processing Syst:1097–1105
He K,Gkioxari G, Dollar P, Girshick R (2018) Mask r-cnn. arXivpreprint arXiv:1703.06870. https://arxiv.org/pdf/1703.06870.pdf . Accessed 24 July 2018
Redmon J, Divvala S, Girshick R, Farhadi R (2016) You only look once: unified, real-time object detection. IEEE Conf. on ComputerVision and Pattern Recognition (CVPR):779–788 https://doi.org/10.1109/CVPR.2016.91
Deng J, Dong W, Socher R, Li-Jia L,Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR09):248-255. https://doi.org/10.1109/CVPR.2009.5206848
Razavian A, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW): 512–519.https://doi.org/10.1109/CVPRW.2014.131
Liaw JJ, Lian SB, Chen RC (2009) Atmospheric visibility monitoring using digital image analysis techniques. In: Jiang X, Petkov N (eds) International Conference on Computer Analysis of Images and Patterns, Lecture Notes in Computer Science (LNCS), vol 5702, pp 1204–1211. https://doi.org/10.1007/978-3-642-03767-2_146
Xie L, Chiu A, Newsam S (2008) Estimating atmospheric visibility using general-purpose cameras. In Bebis G (ed) International Symposium on Visual Computing, Part II. Lecture Notes in Computer Science (LNCS) 5359: 356–367. https://doi.org/10.1007/978-3-540-89646-3_35
Ming-wei A, Zong-Liang G., Jibin L, Tao Z. (2010) Visibility detection based on traffic camera imagery. Proceedings of the Third International Conference on Information Sciences and Interaction Sciences (ICIS). Chengdu, China: 411-414
Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings. J Physiol 197(3):551–566
Hagiwara T, Ota Y, Kaneda Y, Nagata Y, Araki K (2006) A method of processing CCTV digital images for poor visibility identification. Transp Res Rec 1973:95–104. https://doi.org/10.1177/0361198106197300112
Krizhevsky A, Sutskever I., Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada 1: 1097-1105
Cortes C, Vapnik V (1995) Support-vector networks, machine learning 20 (3): 273–297 https://doi.org/10.1007/BF00994018
http://www.livic.ifsttar.fr/linstitut/cosys/laboratoires/livic-ifsttar/logiciels/bases-de-donnees/frosi/ . Accessed 20 June 2017
Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana
Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436. https://doi.org/10.1016/j.patcog.2008.08.014
Seewald AK, Fürnkranz J (2001) An evaluation of grading classifiers. In: Hoffmann F, Hand DJ, Adams N, Fisher D, Guimaraes G (eds) Advances in intelligent data analysis. IDA 2001. Lecture Notes in Computer Science, 2189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44816-0_12
Bianco S, Cadene R, Celona L, Napoletano P (2018) Benchmark analysis of representative deep neural network architectures. IEEE Access 6(1):64270–64277. https://doi.org/10.1109/ACCESS.2018.2877890
Kang H (2018) Accelerator-aware pruning for convolutional neural networks, CoRR, vol. abs/1804.09862. https://arxiv.org/pdf/1804.09862.pdf.
He Y, Dong X, Kang G, Fu Y, Yang Y (2019) Progressive deep neural networks acceleration via soft filter pruning”, arXiv:1808.07471v3, March 2019. https://arxiv.org/pdf/1808.07471.pdf. Accessed September 29 2019
Kamoun F, Chaabani H, Outay F, Yasar A (2020) A survey of approaches for estimating meteorological visibility distance under foggy weather conditions. In: Outay F, Yasar A, Shakshuki E (eds) Global advancements in connected and intelligent mobility: emerging research and opportunities, IGI Global, Chapter, vol 2, pp 65–92. https://doi.org/10.4018/978-1-5225-9019-4.ch002