Estimating Previous Quantization Factors on Multiple JPEG Compressed Images

EURASIP Journal on Information Security - Tập 2021 Số 1 - 2021
Sebastiano Battiato1, Oliver Giudice1, Francesco Guarnera2, Giovanni Puglisi3
1University of Catania, Catania, Italy
2iCTLab s.r.l., Spin-off of University of Catania, Catania, Italy
3University of Cagliari, Cagliari, Italy

Tóm tắt

AbstractThe JPEG compression algorithm has proven to be efficient in saving storage and preserving image quality thus becoming extremely popular. On the other hand, the overall process leaves traces into encoded signals which are typically exploited for forensic purposes: for instance, the compression parameters of the acquisition device (or editing software) could be inferred. To this aim, in this paper a novel technique to estimate “previous” JPEG quantization factors on images compressed multiple times, in the aligned case by analyzing statistical traces hidden on Discrete Cosine Transform (DCT) histograms is exploited. Experimental results on double, triple and quadruple compressed images, demonstrate the effectiveness of the proposed technique while unveiling further interesting insights.

Từ khóa


Tài liệu tham khảo

O. Giudice, A. Paratore, M. Moltisanti, S. Battiato, in International Conference on Image Analysis and Processing. A classification engine for image ballistics of social data (Springer, 2017), pp. 625–636. https://doi.org/10.1007/978-3-319-68548-9_57.

S. Battiato, G. Messina, in Proc. of the First ACM Workshop on Multimedia in Forensics. Digital forgery estimation into DCT domain: a critical analysis, (2010), pp. 389–399.

H. Farid, Digital Image Ballistics from JPEG Quantization: A Followup Study. Computer Science Technical Report TR2008-638 (2008). https://digitalcommons.dartmouth.edu/cs_tr/320.

F. Galvan, G. Puglisi, A. R. Bruna, S. Battiato, First quantization matrix estimation from double compressed JPEG images. IEEE Trans. Inf. Forensics Secur.9(8), 1299–1310 (2014).

O. Giudice, F. Guarnera, A. Paratore, S. Battiato, in Proc. of International Conference on Image Analysis and Processing. 1-D DCT domain analysis for JPEG double compression detection (Springer, 2019), pp. 716–726. https://doi.org/10.1007/978-3-030-30645-8_65.

E. Kee, M. K. Johnson, H. Farid, Digital image authentication from JPEG headers. IEEE Trans. Inf. Forensics Secur.6(3), 1066–1075 (2011).

A. Piva, An overview on image forensics. International Scholarly Research Notices. 2013: (2013). https://doi.org/10.1155/2013/496701.

L. Verdoliva, Media forensics and deepfakes: An overview. IEEE J. Sel. Top. Signal Process.14(5), 910–932 (2020).

S. Battiato, O. Giudice, A. Paratore, in Proc. of the 17th International Conference on Computer Systems and Technologies 2016. Multimedia forensics: discovering the history of multimedia contents (ACM, 2016), pp. 5–16. https://doi.org/10.1145/2983468.2983470.

M. C. Stamm, M. Wu, K. J. R. Liu, Information forensics: An overview of the first decade. IEEE Access. 1:, 167–200 (2013). https://doi.org/10.1109/ACCESS.2013.2260814.

Z. Fan, R. L. De Queiroz, Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans. Image Process.12(2), 230–235 (2003).

S. Mandelli, N. Bonettini, P. Bestagini, V. Lipari, S. Tubaro, in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Multiple JPEG compression detection through task-driven non-negative matrix factorization (IEEE, 2018), pp. 2106–2110. https://doi.org/10.1109/ICASSP.2018.8461904.

C. Pasquini, P. Schöttle, R. Böhme, G. Boato, F. Pèrez-Gonzàlez, in Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. Forensics of high quality and nearly identical JPEG image recompression, (2016), pp. 11–21.

V. Verma, N. Agarwal, N. Khanna, DCT-domain deep convolutional neural networks for multiple JPEG compression classification. Signal Process. Image Commun.67:, 22–33 (2018).

H. Wang, J. Wang, J. Zhai, X. Luo, Detection of triple JPEG compressed color images. IEEE Access. 7:, 113094–113102 (2019).

T. Bianchi, A. De Rosa, A. Piva, in Conference on Acoustics Speech and Signal Processing, ed. by I. International. Improved DCT coefficient analysis for forgery localization in JPEG images, (2011), pp. 2444–2447.

T. Bianchi, A. Piva, Image forgery localization via block-grained analysis of JPEG artifacts. Proc. IEEE Trans. Inf. Forensics Secur.7(3), 1003 (2012).

A. Piva, T. Bianchi, in Proc. of 18th IEEE International Conference on Image Processing (ICIP), 2011. Detection of non-aligned double JPEG compression with estimation of primary compression parameters (IEEE, 2011), pp. 1929–1932. https://doi.org/10.1109/ICIP.2011.6115848.

N. Dalmia, M. Okade, in Proc. of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing. First quantization matrix estimation for double compressed JPEG images utilizing novel DCT histogram selection strategy, (2016), pp. 1–8.

T. H. Thai, R. Cogranne, F. Retraint, T. Doan, JPEG quantization step estimation and its applications to digital image forensics. IEEE Trans. Inf. Forensics Secur.12(1), 123–133 (2016).

H. Yao, H. Wei, T. Qiao, C. Qin, JPEG quantization step estimation with coefficient histogram and spectrum analyses. J. Vis. Commun. Image Represent.69:, 102795 (2020).

J. Lukáš, J. Fridrich, in Proc. of the Digital Forensic Research Workshop. Estimation of primary quantization matrix in double compressed JPEG images, (2003), pp. 5–8.

G. Varghese, A. Kumar, Detection of double JPEG compression on color image using neural network classifier. Int. J.3:, 175–181 (2016).

M. Barni, L. Bondi, N. Bonettini, P. Bestagini, A. Costanzo, M. Maggini, B. Tondi, S. Tubaro, Aligned and non-aligned double JPEG detection using convolutional neural networks. J. Vis. Commun. Image Represent.49:, 153–163 (2017).

T. Uricchio, L. Ballan, R. Caldelli, I. Amerini, in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Localization of JPEG double compression through multi-domain convolutional neural networks, (2017), pp. 53–59.

Q. Wang, R. Zhang, Double JPEG compression forensics based on a convolutional neural network. EURASIP J. Inf. Secur.2016(1), 23 (2016).

A. Plebe, G. Grasso, The unbearable shallow understanding of deep learning. Mind. Mach.29(4), 515–553 (2019).

Y. Niu, B. Tondi, Y. Zhao, M. Barni, Primary Quantization Matrix Estimation of Double Compressed JPEG Images via CNN. IEEE Signal Process. Lett.27:, 191–195 (2020). https://doi.org/10.1109/LSP.2019.2962997.

G. Hudson, A. Léger, B. Niss, I. Sebestyén, JPEG at 25: Still going strong. IEEE MultiMedia. 24(2), 96–103 (2017).

G. K. Wallace, The JPEG still picture compression standard. Commun. ACM. 34(4), 30–44 (1991).

P. Bas, T. Filler, T. Pevnỳ, in International Workshop on Information Hiding. Break our steganographic system: the ins and outs of organizing boss (Springer, 2011), pp. 59–70. https://doi.org/10.1007/978-3-642-24178-9_5.

D. Dang-Nguyen, C. Pasquini, V. Conotter, G. Boato, in Proc. of the 6th ACM Multimedia Systems Conference. RAISE: a raw images dataset for digital image forensics, (2015), pp. 219–224.

T. Gloe, R. Böhme, The dresden image database for benchmarking digital image forensics. J. Digit. Forensic Pract.3(2-4), 150–159 (2010).

G. Schaefer, M. Stich, in Storage and Retrieval Methods and Applications for Multimedia 2004, 5307. UCID: An uncompressed color image database (International Society for Optics and Photonics, 2003), pp. 472–480. https://doi.org/10.1117/12.525375.

J. Park, D. Cho, W. Ahn, H. K. Lee, in Proceedings of the European Conference on Computer Vision (ECCV). Double JPEG detection in mixed JPEG quality factors using deep convolutional neural network, (2018), pp. 636–652.

S. Agarwal, H. Farid, in 2017 IEEE Workshop on Information Forensics and Security (WIFS). Photo forensics from JPEG dimples (IEEE, 2017), pp. 1–6. https://doi.org/10.1109/WIFS.2017.8267641.