Estimates of the population pharmacokinetic parameters and performance of Bayesian feedback: A sensitivity analysis
Tóm tắt
We investigated the influence of bias in the estimates of the population pharmacokinetic parameters on the performance of Bayesian feedback in achieving a desired drug serum concentration. Three specific cases were considered (i) steady-state case, (ii) lidocaine example, and (iii) mexiletine example. Whereas in the first case both the feedback and the desired concentration represented steady-state values, in the lidocaine and mexiletine examples the feedback concentration was assumed to be sampled shortly after starting therapy. RMSE was used as a measure of predictive performance. For the simple steady-state case the relationship between RMSE and bias in the parameter estimates describing the prior distribution could be derived analytically. Monte Carlo simulations were used to explore the two non-steady-state situations. In general, the performance of Bayesian feedback to predict serum concentrations was relatively insensitive to bad population parameter estimates. However, large changes in RMSE could be observed with small changes in the true variance component parameters in particular in the intraindividual residual variance, σ
ɛ
2
, indicating that the prediction interval, in contrast to point prediction, is sensitive to bias in the estimates of the population parameters.
Tài liệu tham khảo
L. B. Sheiner, B. Rosenberg, and K. L. Melmon. Modelling of individual pharmacokinetics for computer-aided drug dosage.Comput. Biomed. Res. 5:441–459 (1972).
C. C. Peck, W. D. Brown, L. B. Sheiner, and B. G. Schuster. A microcomputer drug (theophylline) dosing program which assists and teaches physicians.Proceedings of the Fourth Annual Symposium on Computer Application in Medical Care, IEEE, 1980, pp. 988–994.
J. H. Rodman, A. Hurst, T. Garder, J. Cohen, and R. W. Jelliffe. N-acetylprocainamide kinetics and clinical response during repeated dosing.Clin. Pharmacol. Ther. 32:378–386 (1982).
M. E. Burton, D. C. Brater, P. S. Chen, R. B. Day, P. J. Huber, and M. R. Vasko. A Bayesian feedback method of aminoglycoside dosing.Clin. Pharmacol. Ther. 37:349–357 (1985).
S. Vozeh, T. Uematsu, R. Ritz, O. Schmidlin, G. Kaufmann, A. Scholer, and F. Follath. Computer-assisted individualized lidocaine dosage: Clinical evaluation and comparison with physician performance.Am. Heart J. 113:928–933 (1987).
S. B. Beal and L. B. Sheiner.NONMEM User's Guide. Technical Report, Division of Clinical Pharmacology, University of California, San Francisco (1979).
J. L. Steimer, A. Mallet, and F. Mentré. Estimating interindividual pharmacokinetic variability. In M. Rowlandet al. (eds.),Variability in Drug Therapy: Description, Estimation, and Control, Raven Press, New York, 1985, pp. 65–111.
A. Racine-Poon. A Bayesian approach to nonlinear random effects models.Biometrics 41:1015–1023 (1985).
L. B. Sheiner, S. Beal, B. Rosenberg, and V. V. Marathe. Forecasting individual pharmacokinetics.Clin. Pharmacol. Ther. 26:294–305 (1979).
S. Vozeh, and J. L. Steimer. Feedback control methods for drug dosage optimisation: Concepts, classification and clinical application.Clin. Pharmacokin. 10:457–476 (1985).
L. B. Sheiner and S. L. Beal. Some suggestions for measuring predictive performance.J. Pharmacokin. Biopharm. 9:503–512 (1981).
S. Vozeh, G. Katz, V. Steiner, and F. Follath. Population pharmacokinetic parameters in patients treated with oral mexiletine.Eur. J. Clin. Pharmacol. 23:445–451 (1982).
S. Vozeh, M. Berger, M. Wenk, R. Ritz, and F. Follath. Rapid prediction of individual dosage requirements for lignocaine.Clin. Pharmacokin. 9:354–363 (1984).
S. Vozeh, K. T. Muir, L. B. Sheiner, and F. Follath. Predicting individual phenytoin dosage.J. Pharmacokin. Biopharm. 9:131–146 (1981).
T. H. Grasela and L. B. Sheiner. Population pharmacokinetics of procainamide from routine clinical data.Clin. Pharmacokin. 9:545–554 (1984).
E. J. McGrath and D. C. Irving.Techniques for Efficient Monte Carlo simulation, Vol. 2, Random Number Generation for Selected Probability Distributions, ORNL-RSIC-38, April 1975.
Y. Bard. Generating a sample from a given multivariate normal distribution. In Y. Bard (ed.),Nonlinear Parameter Estimation, Academic Press, New York, 1974, pp. 316–317 (Appendix D).
D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.J. Soc. Indus. Appl. Math. 11:431–441 (1963).
S. Vozeh, T. Uematsu, G. F. Hauf, and F. Follath. Performance of Bayesian feedback to forecast lidocaine serum concentration: Evaluation of the prediction error and the prediction interval.J. Pharmacokin Biopharm. 13:203–212 (1985).
D. Z. D'Argenio and K. Khakmahd. Adaptive control of theophylline therapy: Importance of blood sampling times.J. Pharmacokin. Biopharm. 11:547–549 (1983).