Estimates of the best approximations of the functions of the Nikol’skii–Besov class in the generalized space of Lorentz
Tóm tắt
In this paper, we consider the generalized Lorentz space of periodic functions of several variables and the Nikol’skii–Besov space of functions. The article establishes a sufficient condition for a function to belong from one generalized Lorentz space to another space in terms of the difference of the partial sums of the Fourier series of a given function. Exact in order estimates of the best approximation by trigonometric polynomials of functions of the Nikol’skii–Besov class are obtained.
Tài liệu tham khảo
Akishev, G.: On the imbedding of certain classes of functions of several variables in the Lorentz space. Izvestya AN KazSSR, ser. fiz.-mat. 3, 47–51 (1982)
Akishev, G.A.: On degrees of approximation of some classes by polynomials with respect to generalized Haar system. Sib. Electron. Math. Rep. 3, 92–105 (2006)
Akishev, G.: On the orders \(M\)-terms approximations of classes of functions of the symmetrical space. Mat. Zh. 14(4), 44–71 (2014)
Akishev, G.: Estimates for best approximations of functions from the logarthmic smoothness class in the Lorentz space. Trudy Instituta Matematiki i Mekhaniki UrO RAN. 23(3), 3–21 (2017)
Akishev, G.: An inequality of different metrics in the generalized Lorentz space. Trudy Instituta Matematiki i Mekhaniki UrO RAN 24(4), 5–18 (2018)
Akishev, G.: On the exactness of the inequality of different metrics for trigonometric polynomials in the generalized Lorentz spaces. Trudy Instituta Matematiki i Mekhaniki UrO RAN 25(2), 9–20 (2019)
Besov, O.V.: Investigation of a class of function spaces in connection with imbedding and extension theorems. Tr. Mat. Inst. Steklov. 60, 42–81 (1961)
Burenkov V.I.: Imbedding and extension theorems for classes of differentiable functions of several variables defined on the entire spaces, In Itogi Nauki i Tekhniki. Seriya “Matematicheskii Analiz“ pp.71-155, Moscow (1966)
Cobos, F., Dominguez, O.: On Besov spaces of logarithmic smoothness and Lipschitz spaces. J. Math. Anal. Appl. 425, 71–84 (2015)
Cobos, F., Milman, M.: On a limit class of approximation spaces. Numer. Funct. Anal. Optimiz. 11, 11–31 (1990)
DeVore, R.A., Riemenschneider, S.D., Sharpley, R.C.: Weak interpolation in Banach spaces. J. Funct. Anal. 33, 58–94 (1979)
Ditzian, Z., Tikhonov, S.: Ul’yanov and Nikol’skii-type inequalities. J. Approx. Theory 133(1), 100–133 (2005)
Dominguez, O., Tikhonov, S.: Function spaces of logarithmic smoothness: embeding and characterizations. Preprint (2018). arXiv:1811.06399v [math.FA]. Mem. Amer. Math. Soc. (accepted)
Dung, D., Temlyakov, V., Ullrich, T.: Hyperbolic cross approximation. Adv. Courses Math, CRM Barselona (2018)
Dzhafarov, A.S.: Embedding theorems for classes of functions with differential properties in the norms of special spaces. Dokl. AN Azerb. SSR. 21(2), 10–14 (1965)
Gol’dman, M.L.: On the inclusion of generalized Hölder classes. Math. Notes. 12(3), 626–631 (1972)
Janson, S.: On the interpolation of sublinear operators. Stud. Math. 75, 51–53 (1982)
Kashin B.S., Temlyakov V.: On a norm and approximation characteristics of classes of functions of several variables. Metric theory of functions and related problems in analysis (Russian). Izd. Nauchno-Issled. Aktuarno-Finans. Tsentra (AFTs), Moscow (1999)
Kashin, B.S., Saakyan, A.A.: Orthogonal series. Aktuarno-Finans, Tsentra (AFTs), Moscow (1999)
Kokilashvili, V., Yildirir, Y.E.: Trigonometric polynomials in weighted Lorentz spaces. J. Funct. Spaces Appl. 8(1), 67–86 (2010)
Krein, S.G., Petunin, YuI, Semenov, E.M.: Interpolation of linear operators. Nauka, Moscow (1978)
Lapin S.V.: Some embedding theorems for products of functions, Manuscript N 1036-80Dep, deposited at VINITI (Russian). pp. 31 (1980)
Lizorkin, P.I.: Generalized Holder spaces \(B_{p, \theta }^{(r)}\) and their relations with the Sobolev spaces \(L_{p}^{(r)}\). Sib. Mat. Zhur. 9(5), 1127–1152 (1968)
Nikol’skii, S.M.: Approximation of functions of several variables and embedding theorems. Nauka, Moscow (1977)
Romanyuk, A.S.: The approximation of the isotropic classes \(B_{p, \theta }^{r}\) of periodic functions of many variables in the space \(L_{q}\). Tr. Inst. Mat. Ukrain. 5(1), 263–278 (2008)
Semenov, E.M.: Interpolation of linear operators in symmetric spaces. Sov. Math. Dokl. 6(), 1294–1298 (1965)
Sharpley, R.: Space \(\Lambda _{\alpha }(X)\) and interpolation. J. Funct. Anal. 11, 479–513 (1972)
Sherstneva, L.A.: On the properties of best Lorentz approximations and certain embedding theorems. Izvestiya Vysshikh Uchebnykh Zavedenii. Matem. 10, 48–58 (1987)
Simonov, B.V.: Embedding Nikol’skii classes into Lorentz spaces. Sib. Math. J. 51(4), 728–744 (2010)
Stasyuk, S.A.: Approximating characteristics of the analogs of Besov classes with logarithmic smoothness. Ukr. Math. J. 66(4), 553–560 (2014)
Stasyuk, S.A.: Kolmogorov widths for analogs ofthe Nikol’skii - Besov classes with logarithmic smoothness. Ukr. Math. J. 67(11), 1786–1792 (2015)
Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Univ. Press, Princeton (1971)
Temirgaliev, N.: On the embedding of the classes \(H_{p}^{\omega }\) in Lorentz spaces. Sib. Mat. Zh. 24(2), 160–172 (1983)
Temlyakov, V.N.: Approximation of functions with bounded mixed derivative. Tr. Mat. Inst. Steklov. 178, 3–112 (1986)
Temlyakov, V.: Multivariate approximation. Cambridge University Press, Cambridge (2018)