Estimates of harmonic measure

Archive for Rational Mechanics and Analysis - Tập 65 Số 3 - Trang 275-288 - 1977
Björn E. J. Dahlberg1
1Department of Mathematics, University of Göteborg, Göteborg Chalmers University of Technology, Fack, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agmon, S., A. Douglis & L. Nirenberg, “Estimates near the boundary of solutions of elliptic partial differential equations satisfying general boundary conditions”. Com. Pure Applied Math. 12, 623–727 (1959).

Carleson, L., “On the existence of boundary values of harmonic functions of several variables”. Ark. Mat. 4, 339–343 (1962).

Coifman, R. R. & C. Fefferman, “Weighted norm inequalities for maximal functions and singular integrals”. Studia Math., 51, 241–250 (1974).

Gehring, F. W., “The Lp-integrability of the partial derivatives of a quasiconformal mapping”. Acta Math. 130, 265–277 (1973).

Helms, L.L., “Introduction to potential theory”. New York: Wiley-Interscience 1969.

Hunt, R. & R.L. Wheeden, “On the boundary values of harmonic functions”. Trans. Amer. Math. Soc. 132, 307–322 (1968).

Hunt, R.A. & R.L. Wheeden, “Positive harmonic functions on Lipschitz domains”. Trans. Amer. Math. Soc. 147, 507–527 (1970).

Kemper, J.T., “A boundary Harnack principle for Lipschitz domains and the principle of positive singularities”. Comm. Pure Applied Math. 25, 247–255 (1972).

Naïm, L., Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Ann. Inst. Fourier (Grenoble), 7, 183–281 (1957).

Priwalow, I.I., “Randeigenschaften analytischer Funktionen”. Berlin: Deutscher Verlag der Wissenschaften 1956.

Saks, S., Theory of the integral. New York: Hafner Publishing Company 1937.

Stein, E.M., “Singular integrals and differentiability properties of functions”. New Jersey: Princeton University Press, Princeton 1970.

Warschawski, S.E. & G.E. Schober, “On conformal mapping of certain classes of Jordan domains”. Arch. Rational Mech. Anal. 22, 201–209 (1966).

Widman, K.-O., “Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic equations”. Math. Scand. 21, 17–37 (1967).

Ziemer, W.P., “Some remarks on harmonic measure in space”. Pac. J. Math. 55, 629–638 (1974).