Estimates of Heat Kernels with Neumann Boundary Conditions
Tóm tắt
In this paper, we obtain two-sided estimates on the heat kernels for elliptic operators with singular coefficients equipped with mixed boundary conditions.
Tài liệu tham khảo
Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73, 890–896 (1967)
Aronson, D.G., Serrin, J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 25, 81–122 (1967)
Bass, R.F., Hsu, P.: Some potential theory for reflecting brownian motion in Hölder and Lipschitz domains. Ann. Probab. 19, 486–508 (1991)
Chen, Z.Q., Zhang, T.S.: Time-reversal and elliptic boundary value problems. Ann. Probab. 37, 1008–1043 (2009)
Chen, Z.Q., Fitzsimmons, P.J., Kuwae, K., Zhang, T.S.: Perturbation of symmetric Markov processes. Probab. Theory Relat. Fields 140, 239–275 (2008)
Fabes, E.B., Stroock, D.W.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96, 327–338 (1986)
Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. De Gruyter, New York (1994)
Ito, S.: A boundary value problem of partial differential equations of parabolic type. Duke Math. J. 24, 299–312 (1957)
Lunt, J., Lyons, T.J., Zhang, T.S.: Integrability of functionals of Dirichlet processes, probabilistic representations of semigroups, and estimates of heat kernels. J. Funct. Anal. 153, 320–342 (1998)
Song, R.: Sharp bounds on density, green function and jumping function of subordinate killed BM. Probab. Theory Relat. Fields 128(4), 606–628 (2004)
Sato, K., Ueno, T.: Multi-dimensional diffusion and the Markov process on the boundary. J. Math. Kyoto Univ. 4, 529–605 (1964)
Wehrheim, K.: Uhlenbeck compactness. Series of Lectures in Mathematics, European Mathematical Society (2003)
Zhang, Q.: A Harnack inequality for the equation \(\nabla(a\nabla )+b\nabla u =0\), when |b| ∈ K n + 1. Manuscr. Math. 89, 61–77 (1995)
Zhang, Q.: Gaussian bounds for the fundamental solutions of \(\nabla(A\nabla u)+B\nabla u-u_{t}=0\). Manuscr. Math. 93, 381–390 (1997)