Establishment of an immortalized human erythroid cell line sustaining differentiation potential without inducible gene expression system
Tóm tắt
Ex vivo manufactured red blood cells (RBC) generated from immortalized erythroid cell lines which can continuously grow are expected to become a significant alternative in future transfusion therapies. The ectopic expression of human papilloma virus (HPV) E6/E7 gene has successfully been employed to establish these cell lines. To induce differentiation and maturation of the immortalized cell lines, terminating the HPV-E6/E7 expression through a gene induction system has been believed to be essential. Here, we report that erythroid cell lines established from human bone marrow using simple expression of HPV-E6/E7 are capable of normal erythroid differentiation, without turning gene expression off. Through simply changing cell culture conditions, a newly established cell line, Erythroid Line from Lund University (ELLU), is able to differentiate toward mature cells, including enucleated reticulocytes. ELLU is heterogeneous and, unexpectedly, clones expressing adult hemoglobin rapidly differentiate and produce fragile cells. Upon differentiation, other ELLU clones shift from fetal to adult hemoglobin expression, giving rise to more mature cells. Our findings propose that it is not necessary to employ gene induction systems to establish immortalized erythroid cell lines sustaining differentiation potential and describe novel cellular characteristics for desired functionally competent clones.
Tài liệu tham khảo
Zeuner A, Martelli F, Vaglio S, Federici G, Whitsett C, Migliaccio AR. Concise review: stem cell-derived erythrocytes as upcoming players in blood transfusion. Stem Cells. 2012;30:1587–96.
Migliaccio AR, Masselli E, Varricchio L, Whitsett C. Ex-vivo expansion of red blood cells: how real for transfusion in humans? Blood Rev. 2012;26:81–95.
Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol. 2015;25(Suppl 1):2–23.
Wong S, Keyvanfar K, Wan Z, Kajigaya S, Young NS, Zhi N. Establishment of an erythroid cell line from primary CD36+ erythroid progenitor cells. Exp Hematol. 2010;38:994–1005.
Kurita R, Suda N, Sudo K, et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS ONE. 2013;8:e59890.
Trakarnsanga K, Griffiths RE, Wilson MC, Blair A, Satchwell TJ, Meinders M, et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun. 2017;8:14750.
Trakarnsanga K, Tipgomut C, Metheetrairut C, Wattanapanitch M, Khuhapinant A, Poldee S, et al. Generation of an immortalised erythroid cell line from haematopoietic stem cells of a haemoglobin E/β-thalassemia patient. Sci Rep. 2020;10:16798.
Soboleva S, Kurita R, Ek F, Åkerstrand H, Silvério-Alves R, Olsson R, et al. Identification of potential chemical compounds enhancing generation of enucleated cells from immortalized human erythroid cell lines. Commun Biol. 2021;4:677.
Tang S, Tao M, McCoy JP Jr, Zheng ZM. The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol. 2006;80:4249–63.
Liem RK. Cytoskeletal integrators: the spectrin superfamily. Cold Spring Harb Perspect Biol. 2016;8:a018259.
Daniels DE, Downes DJ, Ferrer-Vicens I, Ferguson DCJ, Singleton BK, Wilson MC, et al. Comparing the two leading erythroid lines BEL-A and HUDEP-2. Haematologica. 2020;105:e389–94.
Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322:1839–42.
Sankaran VG, Xu J, Ragoczy T, Ippolito GC, Walkley CR, et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature. 2009;460:1093–7.
Stamatoyannopoulos G. Control of globin gene expression during development and erythroid differentiation. Exp Hematol. 2005;33:259.
Lee YT, de Vasconcellos JF, Yuan J, Byrnes C, Noh SJ, Meier ER, et al. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood. 2013;122:1034–41.
Miharada K, Hiroyama T, Sudo K, Nagasawa T, Nakamura Y. Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol. 2006;24:1255–6.
Hiroyama T, Miharada K, Sudo K, Danjo I, Aoki N, Nakamura Y. Establishment of mouse embryonic stem cell-derived erythroid progenitor cell lines able to produce functional red blood cells. PLoS ONE. 2008;3:e1544.
Sankaran VG, Orkin SH, Walkley CR. Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis. Genes Dev. 2008;22:463–75.
Sen T, Jain M, Gram M, Mattebo A, Soneji S, Walkley CR, et al. Enhancing mitochondrial function in vivo rescues MDS-like anemia induced by pRb deficiency. Exp Hematol. 2020;88:28–41.
Le Goff S, Boussaid I, Floquet C, Raimbault A, Hatin I, Andrieu-Soler C, et al. p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood. 2021;137:89–102.