Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bhan, 2013, Pathway and protein engineering approaches to produce novel and commodity small molecules, Curr. Opin. Biotechnol., 24, 1137, 10.1016/j.copbio.2013.02.019
Bode, 1991, Regulation of chorismate mutase activity of various yeast species by aromatic amino acids, Antonie van Leeuwenhoek, 59, 9, 10.1007/BF00582113
Borodina, 2014, Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals, Biotechnol. J., 9, 609, 10.1002/biot.201300445
Borodina, 2015, Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine, Metab. Eng., 27, 57, 10.1016/j.ymben.2014.10.003
DeFeyter, 1986, Purification and properties of shikimate kinase II from Escherichia coli K-12, J. Bactiol, 165, 331
Erdeniz, 1997, Cloning-free PCR-based allele replacement methods, Genome Res., 7, 1174, 10.1101/gr.7.12.1174
Ger, 1994, A single Ser-180 mutation desensitizes feedback inhibition of the phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase in Escherichia coli, J. Biochem., 116, 986, 10.1093/oxfordjournals.jbchem.a124657
Gietz, 2002, Transformation of yeast by lithium acetate/single-stranded carrier DNA / polyethylene glycol method, Methods Enzymol., 350, 87, 10.1016/S0076-6879(02)50957-5
Hartmann, 2003, Evolution of feedback-inhibited beta /alpha barrel isoenzymes by gene duplication and a single mutation, Proc. Natl. Acad. Sci. U.S.A, 100, 862, 10.1073/pnas.0337566100
Hawkins, 2008, Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae, Nat. Chem. Biol., 4, 564, 10.1038/nchembio.105
Hong, 2012, Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries, Cell. Mol. Life Sci., 69, 2671, 10.1007/s00018-012-0945-1
Hu, 2003, Mutation analysis of the feedback inhibition site of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Escherichia coli, J. Basic Microbiol., 43, 399, 10.1002/jobm.200310244
Jensen, 2014, EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae, FEMS Yeast Res., 14, 238, 10.1111/1567-1364.12118
Jendresen, 2015, Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae, Appl. Environ. Microbiol., 81, 4458, 10.1128/AEM.00405-15
Juminaga, 2012, Modular engineering of L-tyrosine production in Escherichia coli, Appl. Environ. Microbiol., 78, 89, 10.1128/AEM.06017-11
Koopman, 2012, De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae, Microb. Cell Fact., 11, 155, 10.1186/1475-2859-11-155
Krivoruchko, 2011, Opportunities for yeast metabolic engineering: lessons from synthetic biology, Biotechnol. J., 6, 262, 10.1002/biot.201000308
Krivoruchko, 2015, Microbial acetyl-CoA metabolism and metabolic engineering, Metab. Eng., 28, 28, 10.1016/j.ymben.2014.11.009
Leonard, 2007, Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli, Appl. Environ. Microbiol., 73, 3877, 10.1128/AEM.00200-07
Leonard, 2009, Opportunities in metabolic engineering to facilitate scalable alkaloid production, Nat. Chem. Biol., 5, 292, 10.1038/nchembio.160
Li, 2015, Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae, FEMS Yeast Res., 15, 1
Lim, 2011, High-yield resveratrol production in engineered Escherichia coli, Appl. Environ. Microbiol., 77, 3451, 10.1128/AEM.02186-10
Luttik, 2008, Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact, Metab. Eng., 10, 141, 10.1016/j.ymben.2008.02.002
Maeda, 2012, The shikimate pathway and aromatic amino acid biosynthesis in plants, Annu. Rev. Plant Biol., 63, 73, 10.1146/annurev-arplant-042811-105439
Malla, 2012, Production of 7-O-methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli, Appl. Environ. Microbiol., 78, 684, 10.1128/AEM.06274-11
Nielsen, 2013, Metabolic engineering of yeast for production of fuels and chemicals, Curr. Opin. Biotechnol., 24, 398, 10.1016/j.copbio.2013.03.023
Pandey, 2013, Genetics of Flavonoids, 1617
Perez-Gregorio, 2014, Increasing the added-value of onions as a source of antioxidant flavonoids: a critical review, Crit. Rev. Food Sci. Nutr., 54, 1050, 10.1080/10408398.2011.624283
Reid, 2002, Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR, Methods Enzymol., 350, 258, 10.1016/S0076-6879(02)50968-X
Santos, 2011, Optimization of a heterologous pathway for the production of flavonoids from glucose, Metab. Eng., 13, 392, 10.1016/j.ymben.2011.02.002
Scotti, 2012, SAR, QSAR and docking of anticancer flavonoids and variants: a review, Curr. Top. Med. Chem., 12, 2785, 10.2174/1568026611212240007
Siddiqui, 2012, Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools, FEMS Yeast Res., 12, 144, 10.1111/j.1567-1364.2011.00774.x
Shi, 2014, Improving Production of Malonyl Coenzyme A-Derived Metabolites, 5, 1
Takai A, Nishi R, Joe Y, Ito H., 2005. L-Tyrosine producing bacterium and a method for producing L-tyrosine. US Patent application no. 2005/0277179 A1
Tribe DE., 1987. Novel microorganism and method. US Patent 4,681,852; Jul 21 1987.
Trantas, 2009, Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae, Metab. Eng., 11, 355, 10.1016/j.ymben.2009.07.004
Winkel-Shirley, 2001, Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology, Plant Physiol., 126, 485, 10.1104/pp.126.2.485
Wu, 2014, Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli, PLoS One, 9, e101492, 10.1371/journal.pone.0101492
Yang, 2014, Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli, J. Ind. Microbiol. Biotechnol., 41, 1311, 10.1007/s10295-014-1465-9