Establishment of a Modular Hemodynamic Simulator for Accurate In Vitro Simulation of Physiological and Pathological Pressure Waveforms in Native and Bioartificial Blood Vessels
Tóm tắt
In vitro stimulation of native and bioartificial vessels in perfusable systems simulating natural mechanical environments of the human vasculature represents an emerging approach in cardiovascular research. Promising results have been achieved for applications in both regenerative medicine and etiopathogenetic investigations. However, accurate and reliable simulation of the wide variety of physiological and pathological pressure environments observed in different vessels still remains an unmet challenge. We established a modular hemodynamic simulator (MHS) with interchangeable and modifiable components suitable for the perfusion of native porcine—(i.e. the aorta, brachial and radial arteries and the inferior vena cava) and bioartificial fibrin-based vessels with anatomical site specific pressure curves. Additionally, different pathological pressure waveforms associated with cardiovascular diseases including hyper- and hypotension, tachy- and bradycardia, aortic valve stenosis and insufficiency, heart failure, obstructive cardiomyopathy and arterial stiffening were simulated. Pressure curves, cyclic distension and shear stress were measured for each vessel and compared to ideal clinical pressure waveforms. The pressure waveforms obtained in the MHS showed high similarity to the ideal anatomical site specific pressure curves of different vessel types. Moreover, the system facilitated accurate emulation of physiological and different pathological pressure conditions in small diameter fibrin-based vessels. The MHS serves as a variable in vitro platform for accurate emulation of physiological and pathological pressure environments in biological probes. Potential applications of the system include bioartificial vessel maturation in cardiovascular tissue engineering approaches as well as etiopathogenetic investigations of various cardiovascular pathologies.
Tài liệu tham khảo
Aper, T., M. Wilhelmi, U. Boer, S. Lau, N. Benecke, A. Hilfiker, et al. Dehydration improves biomechanical strength of bioartificial vascular graft material and allows its long-term storage. Innov. Surg. Sci. 3(3):215–224, 2018.
Bergh, N., M. Ekman, E. Ulfhammer, M. Andersson, L. Karlsson, and S. Jern. A new biomechanical perfusion system for ex vivo study of small biological intact vessels. Ann. Biomed. Eng. 33(12):1808–1818, 2005.
Chambers, D. Venous pressure waveforms. In: Basic Physiology for Anaesthetists, edited by D. Chambers, C. Huang, and G. Matthews. Cambridge: Cambridge University Press, 2015, pp. 161–163.
Chouinard, J. A., S. Gagnon, M. G. Couture, A. Levesque, and P. Vermette. Design and validation of a pulsatile perfusion bioreactor for 3D high cell density cultures. Biotechnol. Bioeng. 104(6):1215–1223, 2009.
Denardo, S. J., R. Nandyala, G. L. Freeman, G. L. Pierce, and W. W. Nichols. Pulse wave analysis of the aortic pressure waveform in severe left ventricular systolic dysfunction. Circ. Heart Fail. 3(1):149–156, 2010.
Ding, H., A. Qiao, L. Shen, M. Li, Z. Chen, X. Yu, et al. Design of compliance chamber and after-load in apparatus for cultured endothelial cells subjected to stresses. Cell Biol. Int. 30(5):439–444, 2006.
Engbers-Buijtenhuijs, P., L. Buttafoco, A. A. Poot, P. J. Dijkstra, R. A. I. de Vos, L. M. T. Sterk, et al. Biological characterisation of vascular grafts cultured in a bioreactor. Biomaterials. 27(11):2390–2397, 2006.
Eshtehardi, P., C. McDaniel Michael, S. Jin, S. Dhawan Saurabh, H. Timmins Lucas, G. Binongo José Nilo, et al. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J. Am. Heart Assoc. 2012. https://doi.org/10.1161/JAHA.112.002543.
Gregory SD. Simulation and development of a mock circulation loop with variable compliance [dissertation]. Queensland University of Technology; 2009.
Haga, J. H., Y. S. Li, and S. Chien. Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J. Biomech. 40(5):947–960, 2007.
Hahn, M. S., M. K. McHale, E. Wang, R. H. Schmedlen, and J. L. West. Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann. Biomed. Eng. 35(2):190–200, 2007.
Helms, F., S. Lau, M. Klingenberg, T. Aper, A. Haverich, M. Wilhelmi, et al. Complete myogenic differentiation of adipogenic stem cells requires both biochemical and mechanical stimulation. Ann. Biomed. Eng. 2019. https://doi.org/10.1007/s10439-019-02234-z.
Huang, C. Arterial pressure waveforms. In: Basic Physiology for Anaesthetists, 2nd ed., edited by D. Chambers, C. Huang, and G. Matthews. Cambridge: Cambridge University Press, 2019, pp. 155–157.
Huang, A. H., and L. E. Niklason. Engineering of arteries in vitro. Cell. Mol. Life Sci. 71(11):2103–2118, 2014.
Isenberg, B. C., C. Williams, and R. T. Tranquillo. Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann. Biomed. Eng. 34(6):971–985, 2006.
Jenkins, J. E. Hemodynamics is a 12-letter word! An intro to the basics. Part III: Stenosis and regurgitation. CathLab Digest. 15(7):1, 2007.
Jufri, N. F., A. Mohamedali, A. Avolio, and M. S. Baker. Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc. Cell 2015. https://doi.org/10.1186/s13221-015-0033-z.
Kahkashan, N., M. Arifuddin, M. Hazari, S. Sultana, F. Fatima, and S. Anees. Variation in carotid-femoral pulse wave velocity, augmentation pressure and augmentation index during different phases of menstrual cycle. Ann. Med. Physiol. 2018. https://doi.org/10.23921/amp.2018v2i3.10454.
Kamiya, A., R. Bukhari, and T. Togawa. Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biol. 46(1):127–137, 1984.
Kiran, V. R., P. M. Nabeel, J. Joseph, and M. Sivaprakasam. Brachial artery stiffness estimation using ARTSENS. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017. https://doi.org/10.1109/EMBC.2017.8036812.
Kumar, A., E. W. Thompson, A. Lefieux, D. S. Molony, E. L. Davis, N. Chand, et al. High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J. Am. Coll. Cardiol. 72(16):1926–1935, 2018.
Labadie, R. F., J. F. Antaki, J. L. Williams, S. Katyal, J. Ligush, S. C. Watkins, et al. Pulsatile perfusion system for ex vivo investigation of biochemical pathways in intact vascular tissue. Am. J. Physiol. Heart Circ. Physiol. 270(2):H760–H768, 1996.
McEniery, C. M., J. R. Cockcroft, M. J. Roman, S. S. Franklin, and I. B. Wilkinson. Central blood pressure: current evidence and clinical importance. Eur. Heart J. 35(26):1719–1725, 2014.
Mechoor, R. R., T. Schmidt, and E. Kung. A real-time programmable pulsatile flow pump for in vitro cardiovascular experimentation. J. Biomech. Eng. 2016. https://doi.org/10.1115/1.4034561.
Moore, J. E., Jr., E. Burki, A. Suciu, S. Zhao, M. Burnier, H. R. Brunner, et al. A device for subjecting vascular endothelial cells to both fluid shear stress and circumferential cyclic stretch. Ann. Biomed. Eng. 22(4):416–422, 1994.
Nichols, W. W. Theoretical, experimental and clinical principles. In: McDonald’s Blood Flow in Arteries, 6th ed., edited by C. Vlachopoulos, M. ‘Rourke, and W. W. Nichols. Abington: Routledge, 2011.
Oliver, J. J., and D. J. Webb. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler.Thromb. Vasc. Biol. 23(4):554–566, 2003.
Pantalos, G. M., S. C. Koenig, K. J. Gillars, G. A. Giridharan, and D. L. Ewert. Characterization of an adult mock circulation for testing cardiac support devices. ASAIO J. 50(1):37–46, 2004.
Papaioannou, T. G., and C. Stefanadis. Vascular wall shear stress: basic principles and methods. Hellenic J. Cardiol. 46(1):9–15, 2005.
Peng, X., F. A. Recchia, B. J. Byrne, I. S. Wittstein, R. C. Ziegelstein, and D. A. Kass. In vitro system to study realistic pulsatile flow and stretch signaling in cultured vascular cells. Am. J. Physiol. Cell. Physiol. 279(3):C797-805, 2000.
Piola, M., F. Prandi, N. Bono, M. Soncini, E. Penza, M. Agrifoglio, et al. A compact and automated ex vivo vessel culture system for the pulsatile pressure conditioning of human saphenous veins. J. Tissue Eng. Regen. Med. 10(3):E204–E215, 2016.
Prim, D. A., V. Menon, S. Hasanian, L. Carter, T. Shazly, J. D. Potts, et al. Perfusion tissue culture initiates differential remodeling of internal thoracic arteries, radial arteries, and saphenous veins. J. Vasc. Res. 55(5):255–267, 2018.
Qiu, Y., and J. M. Tarbell. Interaction between wall shear stress and circumferential strain affects endothelial cell biochemical production. J. Vasc. Res. 37(3):147–157, 2000.
Ruiz, P., M. A. Rezaienia, A. Rahideh, T. R. Keeble, M. T. Rothman, and T. Korakianitis. In vitro cardiovascular system emulator (bioreactor) for the simulation of normal and diseased conditions with and without mechanical circulatory support. Artif. Organs. 37(6):549–560, 2013.
Ryan, A. J., C. M. Brougham, C. D. Garciarena, S. W. Kerrigan, and F. J. O’Brien. Towards 3D in vitro models for the study of cardiovascular tissues and disease. Drug Discov. Today 21(9):1437–1445, 2016.
Sabbah, H. N., and P. D. Stein. Valve origin of the aortic incisura. Am. J. Cardiol. 41(1):32–38, 1978.
Shi, Y., T. Korakianitis, Z. Li, and Y. Shi. Structure and motion design of a mock circulatory test rig. J. Med. Eng. Technol. 42(6):443–452, 2018.
Skorton, D. J., and J. K. Perloff. Physical examination of the heart and circulation. Clin. Cardiol. 22(11):764–766, 1999.
Tai, N. R., H. J. Salacinski, A. Edwards, G. Hamilton, and A. M. Seifalian. Compliance properties of conduits used in vascular reconstruction. Br. J. Surg. 87(11):1516–1524, 2000.
Thompson, C. A., P. Colon-Hernandez, I. Pomerantseva, B. D. MacNeil, B. Nasseri, J. P. Vacanti, et al. A novel pulsatile, laminar flow bioreactor for the development of tissue-engineered vascular structures. Tissue Eng. 8(6):1083–1088, 2002.
Williams, C., and T. M. Wick. Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng. 10(5–6):930–41, 2004.
Wolf, F., D. M. Rojas González, U. Steinseifer, M. Obdenbusch, W. Herfs, C. Brecher, et al. VascuTrainer: a mobile and disposable bioreactor system for the conditioning of tissue-engineered vascular grafts. Ann. Biomed. Eng. 46(4):616–626, 2018.
Zamarripa Garcia, M. A., L. A. Enriquez, W. Dembitsky, and K. May-Newman. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation. ASAIO J. 54(3):237–244, 2008.