Establishing structure–property linkages for wicking time predictions in porous polymeric membranes using a data-driven approach

Materials Today Communications - Tập 35 - Trang 106004 - 2023
Willfried Kunz1,2, Patrick Altschuh1,2, Marcel Bremerich3, Michael Selzer1,4, Britta Nestler1,2,4
1Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
2Institute for Applied Materials - Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany
3Sartorius Stedim Biotech GmbH, August-Spindler-Strasse 11, 37079 Goettingen, Germany
4Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany

Tài liệu tham khảo

Himanen, 2019, Data-driven materials science: status, challenges, and perspectives, Adv. Sci., 6 Agrawal, 2016, Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science, Apl Mater., 4, 10.1063/1.4946894 Romanos, 2019, Innovative Data Management in advanced characterization: Implications for materials design, Mater. Today Commun., 20 Kalidindi, 2022, Digital twins for materials, Front. Mater., 48 Röding, 2016, Computational high-throughput screening of fluid permeability in heterogeneous fiber materials, Soft Matter, 12, 6293, 10.1039/C6SM01213B Gao, 2022, Innovative materials science via machine learning, Adv. Funct. Mater., 32, 10.1002/adfm.202108044 Clayson, 2020, High throughput methods in the synthesis, characterization, and optimization of porous materials, Adv. Mater., 32, 10.1002/adma.202002780 Bostanabad, 2018, Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques, Prog. Mater. Sci., 95, 1, 10.1016/j.pmatsci.2018.01.005 Curtarolo, 2013, The high-throughput highway to computational materials design, Nature Mater., 12, 191, 10.1038/nmat3568 Wilkinson, 2016, The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 1, 10.1038/sdata.2016.18 Griem, 2022, KadiStudio: FAIR modelling of scientific research processes, Data Sci. J., 21, 16, 10.5334/dsj-2022-016 Brandt, 2021, Kadi4Mat: A research data infrastructure for materials science, Data Sci. J., 20, 8, 10.5334/dsj-2021-008 Altschuh, 2020 Wang, 2019, Progress report on phase separation in polymer solutions, Adv. Mater., 31, 10.1002/adma.201806733 Stucki, 2018, Porous polymer membranes by hard templating–a review, Adv. Eng. Mater., 20, 10.1002/adem.201700611 Ulbricht, 2006, Advanced functional polymer membranes, Polymer, 47, 2217, 10.1016/j.polymer.2006.01.084 Rouquerol, 1994, Recommendations for the characterization of porous solids (Technical Report), Pure Appl. Chem., 66, 1739, 10.1351/pac199466081739 Altschuh, 2022, Wicking in porous polymeric membranes: Determination of an effective capillary radius to predict the flow behavior in lateral flow assays, Membranes, 12, 10.3390/membranes12070638 Bargmann, 2018, Generation of 3D representative volume elements for heterogeneous materials: A review, Prog. Mater. Sci., 96, 322, 10.1016/j.pmatsci.2018.02.003 Ley, 2018, Characterization of a macro porous polymer membrane at micron-scale by Confocal-Laser-Scanning Microscopy and 3D image analysis, J. Membr. Sci., 564, 543, 10.1016/j.memsci.2018.07.062 Altschuh, 2017, Data science approaches for microstructure quantification and feature identification in porous membranes, J. Membr. Sci., 540, 88, 10.1016/j.memsci.2017.06.020 Wallat, 2022, Computational design and characterisation of gyroid structures with different gradient functions for porosity adjustment, Materials, 15, 3730, 10.3390/ma15103730 August, 2015, Prediction of heat conduction in open-cell foams via the diffuse interface representation of the phase-field method, Int. J. Heat Mass Transfer, 84, 800, 10.1016/j.ijheatmasstransfer.2015.01.052 Wang, 2020, A phase-field study on polymerization-induced phase separation occasioned by diffusion and capillary flow—a mechanism for the formation of porous microstructures in membranes, J. Sol-Gel. Sci. Technol., 1 Zhang, 2021, Phase-field modeling of multiple emulsions via spinodal decomposition, Langmuir, 37, 5275, 10.1021/acs.langmuir.1c00275 Hötzer, 2018, The parallel multi-physics phase-field framework Pace3D, J. Comput. Sci., 26, 1, 10.1016/j.jocs.2018.02.011 Aurenhammer, 1991, Voronoi diagrams—a survey of a fundamental geometric data structure, ACM Comput. Surv., 23, 345, 10.1145/116873.116880 Gebart, 1992, Permeability of unidirectional reinforcements for RTM, J. Compos. Mater., 26, 1100, 10.1177/002199839202600802 Nabovati, 2009, A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method, Composites A, 40, 860, 10.1016/j.compositesa.2009.04.009 Masoodi, 2012 Jamshidi, 2022, Geometric flow control in lateral flow assays: Macroscopic single-phase modeling, Phys. Fluids, 34, 10.1063/5.0093316 Fries, 2010 a Zhdanov, 2003, Spreading of aqueous SDS solutions over nitrocellulose membranes, J. Colloid Interface Sci., 264, 481, 10.1016/S0021-9797(03)00520-4 et al, 2017 Kadi4Mat Team and Contributors, 2022 Xu, 2022, A pore network approach to study throat size effect on the permeability of reconstructed porous media, Water, 14, 77, 10.3390/w14010077 Williams, 2017, gnuplot 5.2 Boodaghi, 2020, A comparison of different geometrical elements to model fluid wicking in paper-based microfluidic devices, AIChE J., 66, 10.1002/aic.16756 Mansfield, 2009, Nitrocellulose membranes for lateral flow immunoassays: A technical treatise, Lateral Flow Immunoassay, 1 Posthuma-Trumpie, 2009, Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats. A literature survey, Anal. Bioanal. Chem., 393, 569, 10.1007/s00216-008-2287-2 Kunz, 2022