Establishing complex compartments-aquifers connectivity via geochemical approaches towards hydrogeochemical conceptual model: Kasserine Aquifer System, Central Tunisia
Tài liệu tham khảo
Abe, 2014, Groundwater recharge revealed by multi-tracers approach and EMMA, in semi-arid irrigated village, Heihe River Basin, Northwest China. 沙漠研究, J. Arid Land Stud., 24-1, 97
Banner, 1989, Isotopic and trace–element constraints on the origin and evolution of saline groundwaters from central Missouri, Geochim. Cosmochim. Acta J., 53, 383, 10.1016/0016-7037(89)90390-6
Ben Chaabane, 2016
Besbes, 1978
Casatny, 1946
Casatny, 1947
Casatny, 1950, Le seuil de gafsa, etude geologique, geophysique, et hydrologique. annales des mines et de la geologiqe, num 6
Brenot, 2015, Insights from the salinity origins and interconnections of aquifers in a regional scale sedimentary aquifer system (Adour-Garonne district, SW France): contributions of δ34S and δ18O from dissolved sulfates and the 87Sr/86Sr ratio, Appl. Geochem., 53, 27, 10.1016/j.apgeochem.2014.12.002
Celle-Jeanton, 2001, Caractérisation isotopique des pluies en Tunisie. Essai de typologie dans la région de Sfax, C. R. Geosci., 33, 625
Cerling, 1989, Sodium calciumion exchange in the weathering of shale: implications of global weathering budgets, Geol. J., 17, 552, 10.1130/0091-7613(1989)017<0552:SCIEIT>2.3.CO;2
Christophersen, 1990, Modelling streamwater chemistry as a mixture of soilwater end members: a step towards second-generation acidification models, J. Hydrol., 116, 307, 10.1016/0022-1694(90)90130-P
Clark, 1997
Craig, 1961, Isotopic variation in meteoric waters, Science, 133, 1702, 10.1126/science.133.3465.1702
Degalier, 1950
Degalier, 1952
Dogramaci, 2002, Strontium and carbon isotopes constraints on carbonate-solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia, J. Hydrol., 262, 50, 10.1016/S0022-1694(02)00021-5
Dogramaci, 2001, Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes, Appl. Geochem., 475, 10.1016/S0883-2927(00)00052-4
Dore, 2012, A framework for analyzing transboundary water governance complexes, illustrated in the Mekong Region, J. Hydrol., 467, 23, 10.1016/j.jhydrol.2012.07.023
Duvert, 2015, Hydrochemical processes in a shallow coal seam gas aquifer and its overlying stream–alluvial system: implications for recharge and inter-aquifer connectivity, Appl. Geochem., 10.1016/j.apgeochem.2015.05.021
Eung SeokLee, 2003, Delineating the karstic flow system in the upper Lost River drainage basin, south central Indiana: using sulphate and δ34SO4 as tracers, Appl. Geochem., 145
Fisher, 1997, Hydrochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the northern Chihuahuan desert, trans-Pecos, Texas, USA, Hydrogeol. J., 5, 4, 10.1007/s100400050102
Genereux, 1997, Chemical mixing model of streamflow generation at La Selva Biological Station, Costa Rica, J. Hydrol., 199, 319, 10.1016/S0022-1694(96)03333-1
Hamzaoui-Azaza, 2011
Hamzaoui-Azaza, 2012, Geochemical characterization of groundwater in a Miocene aquifer, southeastern Tunisia, Environ. Eng. Geosci., 18, 159, 10.2113/gseegeosci.18.2.159
Hassen, 2013
Hassen, 2017, Quantification of the hydrogeological and hydrogeochemical processes of the Kasserine Aquifer System KAS (Central Tunisia), 229
Hassen, 2016, Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia, Environ. Monit. Assess., 188, 135, 10.1007/s10661-016-5124-7
Hassen, 2016, 3D geological modeling of the Kasserine Aquifer System, Central Tunisia: new insights into aquifer-geometry and interconnections for a better assessment of groundwater resources, J. Hydrol., 539, 223, 10.1016/j.jhydrol.2016.05.034
Hooper, 1990, Modelling streamwater chemistry as a mixture of soilwater end-members — an application to the Panola Mountain catchment, Georgia, U.S.A, J. Hydrol., 321, 10.1016/0022-1694(90)90131-G
Jalali, 2007, Stalinization of groundwater in arid and semiarid zones: an example from Tajarak, western Iran, Environ. Geol., 52, 1133, 10.1007/s00254-006-0551-3
Khanfir, 1980
Khanfir, 1981, Etude hydrogéologique du haut plateau de Kasserine, 27
Kleisse, 1990, The identifiability of conceptual hydrochemical models, Water Resour. Res., 2979, 10.1029/WR026i012p02979
Li, 2016, Preliminary assessment of hydraulic connectivity between river water and shallow groundwater and estimation of their transfer rate during dry season in the Shidi River, China, Environ. Earth Sci., 75, 99, 10.1007/s12665-015-4949-7
Liu, 2012, Tracing groundwater recharge sources in a mountain–plain transitional area using stable isotopes and hydrochemistry, J. Hydrol., 464–465, 116, 10.1016/j.jhydrol.2012.06.053
Liu, 2004, Source waters and ow paths in an alpine catchment, colorado front range, United States, Water Resour. Res., 40, 10.1029/2004WR003076
Ma, 2011, Geochemical evolution of groundwater in carbonate aquifers in taiyuan, Northern China, Appl. Geochem., 26, 884, 10.1016/j.apgeochem.2011.02.008
Maliki, 2000
Matter, 2005, Recharge areas and geochemical evolution of groundwater in an alluvial aquifer system in the Sultanate of Oman, Hydrogeol. J., 14, 203, 10.1007/s10040-004-0425-2
Mbarek, 1981
Min Kim, 2017, Hydrochemical assessment of environmental status of surface and ground water in mine areas in South Korea: emphasis on geochemical behaviors of metals and sulfate in ground water, J. Geochem. Explor., 183, 33, 10.1016/j.gexplo.2017.09.014
Moya, 2016, Using environmental isotopes and dissolved methane concentrations to constrain hydrochemical processes and inter-aquifer mixing in the Galilee and Eromanga Basins, Great Artesian Basin, Australia, J. Hydrol., 539, 304, 10.1016/j.jhydrol.2016.05.016
Nazoumou, 2001, Estimation de la recharge et modélisation de nappe en zone aride: cas de la nappe de Kairouan, Tunisie
Negrel, 2007, Hydrogeochemical processes, mixing and isotope tracing in hard rock aquifers and surface waters from the Subarnarekha River Basin, (East Singhbhum District, Jharkhand State, India), Hydrogeol. J., 15, 1535, 10.1007/s10040-007-0227-4
Owen, 2015, Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir, Sci. Total Environ., 523, 233, 10.1016/j.scitotenv.2015.03.115
Parkhurst, 1995, User's guide to PHREEQC – a computer program for speciation, reaction-path, advectivetransport, and inverse geochemical calculations
Programme des Nations Unies pour l'environnement, 2004
Raiber, 2009, Strontium isotopes as tracers to delineate aquifer interactions and the influence of rainfall in the basalt plains of southeastern Australia, J. Hydrol., 188, 10.1016/j.jhydrol.2008.12.020
Raiber, 2015, Environmental isotopes meet 3D geological modelling: conceptualising recharge and structurally-controlled aquifer connectivity in the basalt plains of southwestern Victoria, Australia, J. Hydrol., 527, 262, 10.1016/j.jhydrol.2015.04.053
Reghunath, 2002, The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India, Water Res., 36, 2437, 10.1016/S0043-1354(01)00490-0
Rivera, 2015, Transboundary aquifers along the Canada-US border: science, policy and social issues, J. Hydrol. Reg. Stud., 4, 623, 10.1016/j.ejrh.2015.09.006
Salcedo Sánchez, 2017, Hydrogeochemistry and water-rock interactions in the urban area of Puebla Valley aquifer (Mexico), J. Geochem. Explor., 181, 219, 10.1016/j.gexplo.2017.07.016
Sanchez, 2016, Identifying and characterizing transboundary aquifers along the Mexico-US border: an initial assessment, J. Hydrol., 535, 101, 10.1016/j.jhydrol.2016.01.070
Slama, 2010
Slama, 2016, Multivariate statistical analysis and hydrogeochemical modeling of seawater-freshwater mixing along selected flow paths: case of Korba coastal aquifer Tunisia, Estuar. Coast. Shelf Sci.
Tlili-Zrelli, 2013, Geochemistry and quality assessment of groundwater using graphical and multivariate statistical methods. A case study: Grombalia phreatic aquifer (northeastern Tunisia), Arab. J. Geosci., 6, 3545, 10.1007/s12517-012-0617-3
UNESCO, 2010, 284
Vörösmarty, 2000, Global water resources: vulnerability from climate change and population growth, Science, 289, 284, 10.1126/science.289.5477.284
Voutsis, 2015, Assessing the hydrogeochemistry of groundwaters in ophiolite areas of Euboea Island, Greece, using multivariate statistical methods, J. Geochem. Explor., 159, 79, 10.1016/j.gexplo.2015.08.007
Vungopal, 2009, Environmental impact assessment and seasonal variation study of the groundwater in the vicinity of river of the Adyar, Chennai, India, Environ. Monit. Assess., 149, 81, 10.1007/s10661-008-0185-x
Yamanaka, 2006, Sulfur isotope constraint on the provenance of salinity in a confined aquifer system of the southwestern Nobi Plain, central Japan, J. Hydrol., 35, 10.1016/j.jhydrol.2005.09.026
Yidana, 2010, Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana, J. Afr. Earth Sci., 58, 220, 10.1016/j.jafrearsci.2010.03.003
Zouari, 2005, Chemical and isotopic composition of rain water of station of Sfax, Tunisia