Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Dầu thiết yếu được nạp vào nanoparticle polymer: hiệu quả sinh học đối với côn trùng gây hại kinh tế và y tế và đánh giá rủi ro đối với các sinh vật không phải mục tiêu trên cạn và dưới nước
Tóm tắt
Bài báo này giới thiệu các tác động gây chết, gây hại không chết và độc tính sinh thái của dầu thiết yếu bạc hà và dầu thiết yếu palmarosa (EOs) cùng với các nanoparticle polymer của chúng (PNs). Các phân tích lý - hóa cho thấy PNs bạc hà có tính phân bố đa dạng (PDI > 0.4) với kích thước 381 nm và hiệu quả nạp (LE) là 70.3%, trong khi PNs palmarosa có tính phân bố đồng nhất (PDI < 0.25) với kích thước 191 nm và LE là 89.7%. Các EOs và PNs đã được đánh giá trên các con trưởng thành của mọt gạo (Sitophilus oryzae L.) và bọ thuốc lá (Lasioderma serricorne F.) cùng với ấu trùng của muỗi (Culex pipiens pipiens Say). Trên S. oryzae và L. serricorne, PNs đã làm tăng hoạt tính gây chết của EOs, kéo dài hiệu ứng đuổi trong 84 giờ và cũng đã điều chỉnh các biến hành vi trong vòng 24 giờ. Hơn nữa, EOs và PNs đã tạo ra những tác động độc hại đối với C. pipiens pipiens. Mặt khác, các EOs bạc hà và palmarosa cũng như các PNs của chúng không độc đối với các sinh vật không phải mục tiêu trên cạn, ấu trùng của sâu bột (Tenebrio molitor L.) và nymph của gián đốm cam (Blaptica dubia S.). Ngoài ra, PNs có độc tính nhẹ đối với các sinh vật không phải mục tiêu dưới nước, chẳng hạn như tôm nước mặn (Artemia salina L.). Do đó, những kết quả này cho thấy rằng PNs là một công thức mới và thân thiện với môi trường để kiểm soát các loại côn trùng gây hại.
Từ khóa
#dầu thiết yếu #nanoparticle polymer #côn trùng gây hại #độc tính sinh thái #kiểm soát sinh vật gây hạiTài liệu tham khảo
Adams RP (2007) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, 4th edn. Allured Publ, Carol Stream, IL
Al-Harbi NA, Al Attar NM, Hikal DM, Mohamed SE, Abdel Latef AAH, Ibrahim AA, Abdein MA (2021) Evaluation of insecticidal effects of plants essential oils extracted from basil, black seeds and lavender against Sitophilus oryzae. Plants 10:829. https://doi.org/10.3390/plants10050829
Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472. https://doi.org/10.1007/s00436-006-0182-3
Arena JS, Omarini AB, Zunino MP, Peschiutta ML, Defagó MT, Zygadlo JA (2018) Essential oils from Dysphania ambrosioides and Tagetes minuta enhance the toxicity of a conventional insecticide against Alphitobius diaperinus. Ind Crop Prod 122:190–194. https://doi.org/10.1016/j.indcrop.2018.05.077
Assalin MR, dos Santos LDL, Souza DRC, Rosa MA, Duarte RCRM, Castanha RF, Durán N (2019) Ecotoxicity evaluation: preparation of poly-ε-caprolactone and chitosan nanoparticles as carriers of thiamethoxam pesticide. J Phys Conf Ser 1323. IOP Publishing. https://doi.org/10.1088/1742-6596/1323/1/012017
Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Rani PU, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1–15. https://doi.org/10.1007/s10340-017-0898-0
Babu KG, Kaul VK (2005) Variation in essential oil composition of rose-scented geranium (Pelargonium sp.) distilled by different distillation techniques. Flavour Fragr J 20:222–231. https://doi.org/10.1002/ffj.1414
Benelli G, Pavela R, Cianfaglione K, Sender J, Danuta U, Maślanko W, Aguzzi C (2020) Ascaridole-rich essential oil from marsh rosemary (Ledum palustre) growing in Poland exerts insecticidal activity on mosquitoes, moths and flies without serious effects on non-target organisms and human cells. Food Chem Toxicol 138:111184. https://doi.org/10.1016/j.fct.2020.111184
Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28:3–10. https://doi.org/10.1007/s10876-016-1131-7
Benelli G, Pavela R, Petrelli R, Cappellacci L, Bartolucci F, Canale A, Maggi F (2019a) Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’ to a source of effective and eco-friendly botanical insecticides. Ind Crop Prod 134:26–32. https://doi.org/10.1016/j.indcrop.2019.03.055
Benelli G, Pavela R, Zorzetto C, Sánchez-Mateo CC, Santini G, Canale A, Maggi F (2019b) Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol Gen 39:9–18. https://doi.org/10.1127/entomologia/2019/0662
Campolo O, Cherif A, Ricupero M, Siscaro G, Grissa-Lebdi K, Russo A, Palmeri V (2017) Citrus peel essential oil nanoformulations to control the tomato borer, Tuta absoluta: chemical properties and biological activity. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-13413-0
Cao JQ, Guo SS, Wang Y, Pang X, Geng ZF, Du SS (2018) Contact toxicity and repellency of the essential oils of Evodia lenticellata Huang and Evodia rutaecarpa (Juss.) Benth. Leaves against three stored product insects. J Oleo Sci 67:1027–1034. https://doi.org/10.5650/jos.ess17251
Chhipa H (2017) Nanopesticide: current status and future possibilities. Agricul Res Technol 5:555–565. https://doi.org/10.19080/ARTOAJ.2017.05.555651
Christofoli M, Costa EC, Bicalho KU, de Cássia DV, Peixoto MF, Alves CCF, de Melo CC (2015) Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crops Prod 70:301–308
Conti B, Flamini G, Cioni PL, Ceccarini L, Macchia M, Benelli G (2014) Mosquitocidal essential oils: are they safe against non-target aquatic organisms? Parasitol Res 113:251–259. https://doi.org/10.1007/s00436-013-3651-5
Correa YDCG, Faroni LR, Haddi K, Oliveira EE, Pereira EJG (2015) Locomotory and physiological responses induced by clove and cinnamon essential oils in the maize weevil Sitophilus zeamais. Pestic Biochem Phys 125:1–37. https://doi.org/10.1016/j.pestbp.2015.06.005
de Araújo AMN, Faroni LRDA, de Oliveira JV, Navarro DMDAF, Breda MO, de França SM (2017) Lethal and sublethal responses of Sitophilus zeamais populations to essential oils. J Pest Sci 90:589–600. https://doi.org/10.1007/s10340-016-0822-z
de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561. https://doi.org/10.1016/j.biotechadv.2014.10.010
de Oliveira LM, Silva LS, Mar JM, Azevedo SG, Rabelo MS, da Fonseca Filho HD, Sanches EA (2019) Alternative biodefensive based on the essential oil from Allium sativum encapsulated in PCL/gelatin nanoparticles. J Food Engin Technol 8:65–74. https://doi.org/10.32732/jfet.2019.8.2.65
Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
Dhinakaran SR, Mathew N, Munusamy S (2019) Synergistic terpene combinations as larvicides against the dengue vector Aedes aegypti Linn. Drug Dev Res 80:791–799. https://doi.org/10.1002/ddr.21560
Ebadollahi A, Taghinezhad E (2019) Modeling and optimization of the insecticidal effects of Teucrium polium L. essential oil against red flour beetle (Tribolium castaneum Herbst) using response surface methodology. Inf Process Agric 7:286–293. https://doi.org/10.1016/j.inpa.2019.08.004
Esmaili F, Sanei-Dehkordi A, Amoozegar F, Osanloo M (2021) A review on the use of essential oil-based nanoformulations in control of mosquitoes. Biointerface Res Appl Chem 11:12516–12529. https://doi.org/10.33263/BRIAC115.1251612529
George DR, Sparagano OAE, Port G, Okello E, Shiel RS, Guy JH (2009) Repellence of plant essential oils to Dermanyssus gallinae and toxicity to the non-target invertebrate Tenebrio molitor. Vet Parasitol 162:129–134. https://doi.org/10.1016/j.vetpar.2009.02.009
George DR, Sparagano OAE, Port G, Okello E, Shiel RS, Guy JH (2010) Toxicity of plant essential oils to different life stages of the poultry red mite, Dermanyssus gallinae, and non-target invertebrates. Med Vet Entomol 24:9–15. https://doi.org/10.1111/j.1365-2915.2009.00856.x
Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101. https://doi.org/10.1016/j.rvsc.2016.05.017
Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, Benelli G (2018) Larvicidal activity of the essential oil from Amomum subulatum Roxb. (Zingiberaceae) against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae), and non-target impact on four mosquito natural enemies. Physiol Mol Plant P 101:219–224. https://doi.org/10.1016/j.pmpp.2017.01.003
Guo SS, Zhang WJ, You CX, Liang JY, Yang K, Geng ZF, Wang CF (2016) Chemical composition of essential oil extracted from Laggera pterodonta and its bioactivities against two stored product insects. J Food Process Pres 41:e12941. https://doi.org/10.1111/jfpp.12941
Haddi K, Oliveira EE, Faroni LR, Guedes DC, Miranda NN (2015) Sublethal exposure to clove and cinnamon essential oils induces hormetic-like responses and disturbs behavioral and respiratory responses in Sitophilus zeamais (Coleoptera: Curculionidae). J Econ Entomol 108:2815–2822. https://doi.org/10.1093/jee/tov255
Hashem AS, Awadalla SS, Zayed GM, Maggi F, Benelli G (2018) Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—insecticidal activity and mode of action. Environ Sci Pollut Res 25:18802–18812. https://doi.org/10.1007/s11356-018-2068-1
Ikawati S, Himawan T, Abadi AL, Tarno, H (2021) Characterization of clove oil nanoparticles and their insecticidal activity against Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae). Agrivita 43: 43. https://doi.org/10.17503/agrivita.v1i1.2532
Jampílek J, Kráľová K (2018) Nanomaterials applicable in food protection. In Rai VR, Bai JA (Eds) Nanotechnology applications in the food industry. CRC Press, pp 75–96. https://doi.org/10.1201/9780429488870-5
Jankowska M, Lapied B, Jankowski W, Stankiewicz M (2019) The unusual action of essential oil component, menthol, in potentiating the effect of the carbamate insecticide, bendiocarb. Pestic Biochem Physiol 158:101–111. https://doi.org/10.1016/j.pestbp.2019.04.013
Jesser E, Lorenzetti AS, Yeguerman C, Murray AP, Domini C, Werdin-González JO (2020a) Ultrasound assisted formation of essential oil nanoemulsions: emerging alternative for Culex pipiens pipiens Say (Diptera: Culicidae) and Plodia interpunctella Hübner (Lepidoptera: Pyralidae) management. Ultrason Sonochemistry 61:104832. https://doi.org/10.1016/j.ultsonch.2019.104832
Jesser E, Yeguerman C, Stefanazzi N, Gomez R, Murray AP, Ferrero AA, Werdin-González JO (2020b) Ecofriendly approach for the control of a common insect pest in the food industry, combining polymeric nanoparticles and post-application temperatures. J Agric Food Chem 68:5951–5958. https://doi.org/10.1021/acs.jafc.9b06604
Jesser EN, Werdin González JO, Murray AP, Ferrero AA (2017) Efficacy of essential oils to control the Indian meal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J Asia Pac Entomol 20:1122–1129. https://doi.org/10.1016/j.aspen.2017.08.004
Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:677–684. https://doi.org/10.1038/s41565-018-0131-1
Kamrin MA (1997) Pesticides profiles toxicity. Lewis Publishers, EUA, Environmental impact and fate, p 676
Khandelwal N, Barbole RS, Banerjee SS, Chate GP, Biradar AV, Khandare JJ, Giri AP (2016) Budding trends in integrated pest management using advanced micro- and nano-materials: challenges and perspectives. J Environ Manag 184:157–169. https://doi.org/10.1016/j.jenvman.2016.09.071
Khoshraftar Z, Safekordi AA, Shamel A, Zaefizadeh M (2019) Synthesis of natural nanopesticides with the origin of Eucalyptus globulus extract for pest control. Green Chem Lett Rev 12:286–298. https://doi.org/10.1080/17518253.2019.1643930
Kitherian S (2017) Nano and bio-nanoparticles for insect control. Res J Nanosci Nanotechnol 7:1–9. https://doi.org/10.3923/rjnn.2017.1.9
Klauck V, Pazinato R, Volpato A, dos Santos DDS, Santos RC, Baldissera MD, da Silva AS (2018) Insecticidal effect of several essential oils against Musca domestica. Comp Clin Pathol 27:167–172. https://doi.org/10.1007/s00580-017-2572-6
Kumar P, Mishra S, Malik A, Satya S (2011) Insecticidal properties of Mentha species: a review. Ind Crop Prod 34:802–817. https://doi.org/10.1016/j.indcrop.2011.02.019
Levchenko MA, Silivanova EA, Khodakov PE, Gholizadeh S (2021) Insecticidal efficacy of some essential oils against adults of Musca domestica L. (Diptera: Muscidae). Int J Trop Insect Sci 41:2669–2677. https://doi.org/10.1007/s42690-021-00448-0
Liu TT, Chao LKP, Hong KS, Huang YJ, Yang TS (2020) Composition and insecticidal activity of essential oil of Bacopa caroliniana and interactive effects of individual compounds on the activity. Insects 11:23. https://doi.org/10.3390/insects11010023
Loetti V, Schweigmann N, Burroni N (2011) Development rates, larval survivorship and wing length of Culex pipiens (Diptera: Culicidae) at constant temperatures. J Nat Hist 45:2203–2213. https://doi.org/10.1080/00222933.2011.590946
López Gutiérrez A, Borrego Alonso SF, Arenas PM, Cabrera N, Stampella P (2011) Insectos dañinos al patrimonio documental de archivos y bibliotecas: diagnóstico de dos casos en la República de Cuba y la República Argentina. Códices 7:49–64
Lourenço AM, Haddi K, Ribeiro BM, Corrêia RF, Tomé HV, Santos-Amaya O, Aguiar RW (2018) Essential oil of Siparuna guianensis as an alternative tool for improved lepidopteran control and resistance management practices. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-25721-0
Lucia A, Guzmán E (2020) Emulsions containing essential oils, their components or volatile semiochemicals as promising tools for insect pest and pathogen management. Adv Colloid Interface Sci 287:102330. https://doi.org/10.1016/j.cis.2020.102330
Machiani MA, Javanmard A, Morshedloo MR, Maggi F (2018) Evaluation of yield, essential oil content and compositions of peppermint (Mentha piperita L.) intercropped with faba bean (Vicia faba L.). J Clean Prod 171:529–537. https://doi.org/10.1016/j.jclepro.2017.10.062
Malaikozhundan B, Vinodhini J (2018) Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the pulse beetle Callosobruchus Maculatus. Mater Today Commun 14:106–115. https://doi.org/10.1016/j.mtcomm.2017.12.015
McKay DL, Blumberg JB (2006) A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Res 20:619–633. https://doi.org/10.1002/ptr.1900
Miura PT, Queiroz SCN, Jonsson CM, Chagas EC, Chaves FCM, Reyes FG (2021) Study of the chemical composition and ecotoxicological evaluation of essential oils in Daphnia magna with potential use in aquaculture. Aquac Res 52:3415–3424. https://doi.org/10.1111/are.15186
Montefuscoli AR, González JOW, Palma SD, Ferrero AA, Band BF (2014) Design and development of aqueous nanoformulations for mosquito control. Parasitol Res 113:793–800. https://doi.org/10.1007/s00436-013-3710-y
Mossa ATH, Abdelfattah NAH, Mohafrash SMM (2017) Nanoemulsion of camphor (Eucalyptus globulus) essential oil, formulation, characterization and insecticidal activity against wheat weevil, Sitophilus granarius. Asian J Crop Sci 9:50–62. https://doi.org/10.3923/ajcs.2017.50.62
Muthukumaran U, Govindarajan M, Rajeswary M, Veerakumar K, Amsath A, Muthukumaravel K (2016) Adulticidal activity of synthesized silver nanoparticles using Chomelia asiatica Linn. (Family: Rubiaceae) against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Int J Zool Applied Biosci 1:118–129. https://doi.org/10.5281/zenodo.1309660
Narayanan M, Ranganathan M, Subramanian SM, Kumarasamy S, Kandasamy S (2020) Toxicity of cypermethrin and enzyme inhibitor synergists in red hairy caterpillar Amsacta albistriga (Lepidoptera: Arctiidae). J Basic Appl Zool 81:1–8. https://doi.org/10.1186/s41936-020-00185-9
Navayan A, Moghimipour E, Khodayar MJ, Vazirianzadeh B, Siahpoosh A, Valizadeh M, Mansourzadeh Z (2017) Evaluation of the mosquito repellent activity of nano-sized microemulsion of Eucalyptus globulus essential oil against Culicinae. Jundishapur J Nat Pharm Prod 12. https://doi.org/10.5812/jjnpp.55626
Niza E, Božik M, Bravo I, Clemente-Casares P, Lara-Sanchez A, Juan A, Alonso-Moreno C (2020) PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chem 328:127131. https://doi.org/10.1016/j.foodchem.2020.127131
Oliveira CR, Domingues CE, de Melo NF, Roat TC, Malaspina O, Jones-Costa M, Fraceto LF (2019b) Nanopesticide based on botanical insecticide pyrethrum and its potential effects on honeybees. Chemosphere 236:124282. https://doi.org/10.1016/j.chemosphere.2019.07.013
Park YJ, Baskar TB, Yeo SK, Arasu MV, Al-Dhabi NA, Lim SS, Park SU (2016) Composition of volatile compounds and in vitro antimicrobial activity of nine Mentha spp. Springerplus 5:1628. https://doi.org/10.1186/s40064-016-3283-1
Pascoli M, Lopes-Oliveira PJ, Fraceto LF, Seabra AB, Oliveira HC (2018) State of the art of polymeric nanoparticles as carrier systems with agricultural applications: a minireview. Energy, Ecology Envir 3:137–148. https://doi.org/10.1007/s40974-018-0090-2
Pascual-Villalobos MJ, Cantó-Tejero M, Vallejo R, Guirao P, Rodríguez-Rojo S, Cocero MJ (2017) Use of nanoemulsions of plant essential oils as aphid repellents. Ind Crops Prod 110:45–57. https://doi.org/10.1016/j.indcrop.2017.05.019
Pavela R (2014) Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia-Pac Entomol 17:287–293. https://doi.org/10.1016/j.aspen.2014.02.001
Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007. https://doi.org/10.1016/j.tplants.2016.10.005
Plata-Rueda A, Campos JM, da Silva RG, Martínez LC, Dos Santos MH, Fernandes FL, Zanuncio JC (2018) Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granarius. Ecotox Environ Safe 156:263–270. https://doi.org/10.1016/j.ecoenv.2018.03.033
Raina VK, Srivastava SK, Aggarwal KK, Syamasundar KV, Khanuja SPS (2003) Essential oil composition of Cymbopogon martinii from different places in India. Flavour Fragr J 18:312–315. https://doi.org/10.1002/ffj.1222
Rajkumar V, Gunasekaran C, Christy IK, Dharmaraj J, Chinnaraj P, Paul CA (2019) Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. Pest Biochem Physiol 156:138–144. https://doi.org/10.1016/j.pestbp.2019.02.016
Rao BR, Kaul PN, Syamasundar KV, Ramesh S (2005) Chemical profiles of primary and secondary essential oils of palmarosa (Cymbopogon martinii (Roxb.). Ind Crop Prod 21:121–127. https://doi.org/10.1016/j.indcrop.2004.02.002
Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424. https://doi.org/10.1146/annurev-ento-120710-100554
Reyes EI, Farias ES, Silva EM, Filomeno CA, Plata MA, Picanço MC, Barbosa LC (2019) Eucalyptus resinifera essential oils have fumigant and repellent action against Hypothenemus hampei. Crop Prot 116:49–55. https://doi.org/10.1016/j.cropro.2018.09.018
Rocha AG, Oliveira BMS, Melo CR, Sampaio TS, Blank AF, Lima AD, Bacci L (2018) Lethal effect and behavioral responses of leaf-cutting ants to essential oil of Pogostemon cablin (Lamiaceae) and its nanoformulation. Neotrop Entomol 47:769–779. https://doi.org/10.1007/s13744-018-0615-6
Saad MM, Abou-Taleb HK, Abdelgaleil SA (2018) Insecticidal activities of monoterpenes and phenylpropenes against Sitophilus oryzae and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Appl Entomol Zool 53:173–181. https://doi.org/10.1007/s13355-017-0532-x
Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372:105–111. https://doi.org/10.1016/j.ijpharm.2008.12.029
Salem N, Sriti J, Bachrouch O, Msaada K, Khammassi S, Hammami M, Abderraba M (2018) Phenological stage effect on phenolic composition and repellent potential of Mentha pulegium against Tribolium castaneum and Lasioderma serricorne. Asian Pac J Trop Biomed 8:207–216. https://doi.org/10.4103/2221-1691.231283
Sarma R, Adhikari K, Mahanta S, Khanikor B (2019) Combinations of plant essential oil based terpene compounds as larvicidal and adulticidal agent against Aedes aegypti (Diptera: Culicidae). Sci Rep 9:1–12. https://doi.org/10.1038/s41598-019-45908-3
Shahzad K, Manzoor F (2021) Nanoformulations and their mode of action in insects: a review of biological interactions. Drug Chem Toxicol 44:1–11. https://doi.org/10.1080/01480545.2018.1525393
Silva DC, de Fátima A-B, Bacci L, Blank AF, Faro RRN, Pinto JAO, Pereira KLG (2019) Toxicity and behavioral alterations of essential oils of Eplingiella fruticosa genotypes and their major compounds to Acromyrmex balzani. Crop Prot 116:181–187. https://doi.org/10.1016/j.cropro.2018.11.002
Slattery M, Harper B, Harper S (2019) Pesticide encapsulation at the nanoscale drives changes to the hydrophobic partitioning and toxicity of an active ingredient. Nanomaterials 9:81–92. https://doi.org/10.3390/nano9010081
Spochacz M, Chowański S, Walkowiak-Nowicka K, Szymczak M, Adamski Z (2018) Plant-derived substances used against beetles–pests of stored crops and food–and their mode of action: a review. Compr Rev Food Sci Food Saf 17:1339–1366. https://doi.org/10.1111/1541-4337.12377
Stadler T, Buteler M, Weaver DK, Sofie S (2012) Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 48:81–90. https://doi.org/10.1016/j.jspr.2011.09.004
Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, Alarfaj AA (2017) Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquatic Toxicol 188:100–108. https://doi.org/10.1016/j.aquatox.2017.04.015
Suwannayod S, Sukontason KL, Pitasawat B, Junkum A, Limsopatham K, Jones MK, Thavara U (2019) Synergistic toxicity of plant essential oils combined with pyrethroid insecticides against blow flies and the house fly. Insects 10:178. https://doi.org/10.3390/insects10060178
Tofel KH, Adler C, Nukenine EN (2018) Binary mixture efficacy of NeemAzal and Plectranthus glandulosus leaf powder against cowpea and maize weevils. J Pest Sci 91:873–886. https://doi.org/10.5073/jka.2018.463.186
Vezzani D, Albicocco AP (2009) The effect of shade on the container index and pupal productivity of the mosquitoes Aedes aegypti and Culex pipiens breeding in artificial containers. Med Vet Entomol 23:78–84. https://doi.org/10.1111/j.1365-2915.2008.00783.x
Vurro M, Miguel-Rojas C, Pérez-de-Luque A (2019) Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag Sci 75:2403–2412. https://doi.org/10.1002/ps.5348
Walker CH, Sibly RM, Hopkin SP, Peakall DB (2012) Principles of ecotoxicology. CRC Press, New York, Boca Raton
Werdin González JO, Gutiérrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control–characterization and biological properties. Chemosphere 100:130–138. https://doi.org/10.1016/j.chemosphere.2013.11.056
Werdin González JO, Jesser EN, Yeguerman CA, Ferrero AA, Fernández BB (2017) Polymer nanoparticles containing essential oils: new options for mosquito control. Environ Sci Pollut Res 24:17006–17015. https://doi.org/10.1007/s11356-017-9327-4
Werdin González JO, Stefanazzi N, Murray AP, Ferrero AA, Band BF (2015) Novel nanoinsecticides based on essential oils to control the German cockroach. J Pest Sci 88:393–404. https://doi.org/10.1007/s10340-014-0607-1
Werdin González JO, Yeguerman C, Marcovecchio D, Delrieux C, Ferrero A, Band BF (2016) Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the German cockroach. Ecotoxicol Environ Saf 130:11–18. https://doi.org/10.1016/j.ecoenv.2016.03.045
Yadegarinia D, Gachkar L, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I (2006) Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochem 67:1249–1255. https://doi.org/10.1016/j.phytochem.2006.04.025
Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162. https://doi.org/10.1021/jf9023118
Yeguerman C, Jesser E, Massiris M, Delrieux C, Murray AP, González JW (2020) Insecticidal application of essential oils loaded polymeric nanoparticles to control German cockroach: Design, characterization and lethal/sublethal effects. Ecotoxicol Environ Saf 189:110047. https://doi.org/10.1016/j.ecoenv.2019.110047
You CX, Zhang WJ, Guo SS, Wang CF, Yang K, Liang JY, Deng ZW (2015) Chemical composition of essential oils extracted from six Murraya species and their repellent activity against Tribolium castaneum. Ind Crop Prod 76:681–687. https://doi.org/10.1016/j.indcrop.2015.07.044
Yuan L, Yang X, Yu X, Wu Y, Jiang D (2019) Resistance to insecticides and synergistic and antagonistic effects of essential oils on dimefluthrin toxicity in a field population of Culex quinquefasciatus Say. Ecotoxicol Environ Saf 169:928–936. https://doi.org/10.1016/j.ecoenv.2018.11.115
Zhang WJ, You CX, Yang K, Chen R, Wang Y, Wu Y, Lei N (2014) Bioactivity of essential oil of Artemisia argyi Lévl. et Van. and its main compounds against Lasioderma serricorne. J Oleo Sci 63:829–837. https://doi.org/10.5650/jos.ess14057