Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18(2):265–267. https://doi.org/10.1093/jee/18.2.265a
Abramson CI, Wanderley PA, Wanderley MJA, Miná AJS, Baracho de Souza O (2006) Effect of essential oil from citronella and alfazema on fennel aphids Hyadaphis foeniculi Passerini (Hemiptera: Aphididae) and its predator Cycloneda sanguinea L.. (Coleoptera: Coccinelidae). Am J Environ Sci 3:9–10
Abramson CI, Wanderley PA, Wanderley MJA, Silva JCR, Michaluk LM (2007) The effect of essential oils of sweet fennel and pignut on mortality and learning in Africanized honeybees (Apis mellifera L.) (Hymenoptera: Apidae). Neotrop Entomol 36(6):828–835. https://doi.org/10.1590/S1519-566X2007000600002
Aprotosoaie AC, Spac A, Hancianu M, Miron A, Tanasescu VF, Borneanu V, Stanescu U (2010) The chemical profile of essential oils obtained from fennel fruits (Foeniculum vulgare Mill.) Farmacia 58:46–53
Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475. https://doi.org/10.1016/j.fct.2007.09.106
Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67(8):886–890. https://doi.org/10.1002/ps.2189
Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS (2014) The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol 51:41–51. https://doi.org/10.1016/j.ibmb.2014.05.003
Benelli G, Pavela R, Canale A, Mehlhorn H (2016) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 115(7):2545–2560. https://doi.org/10.1007/s00436-016-5095-1
Benelli G, Pavela R, Iannarelli R, Petrellc R, Cappellacci L, Cianfaglione K, Afshar HF, Nicoletti M, Canale A, Maggi F (2017) Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasisvector Culex quinquefasciatus Say. Ind Crop Prod 96:186–195. https://doi.org/10.1016/j.indcrop.2016.11.059
Blackman RL, Eastop VF (2000) Aphids on the World’s crops. An identification and information guide, 2nd edn. John Wiley & Sons Ltd, Hoboken
Blanc S, Uzest M, Drucker M (2011) New research horizons in vector-transmission of plant viruses. Curr Opin Microbiol 14(4):483–491. https://doi.org/10.1016/j.mib.2011.07.008
Choi EM, Hwang JK (2004) Antiinflammatory, analgesic and antioxidanteactivities of the fruit of Foeniculum vulgare. Fitoterapia 75(6):557–565. https://doi.org/10.1016/j.fitote.2004.05.005
Costa AV, Pinheiro PF, Rondelli VM, de Queiroz VT, Tuler AC, Brito KB, Stinguel P, Pratissoli D (2013) Cymbopogon stratus (Poaceae) essential oil on Frankliniella schultzei (Thysanoptera: Thripidae) and Myzus persicae (Hemiptera: Aphididae). Biosci J 29:1840–1847H
Costa AV, Pinheiro PF, de Queiroz VT, Rondelli VM, Marins AK, Valbon WR, Pratissoli D (2015) Chemical composition of essential oil from Eucalyptus citriodora leaves and insecticidal activity against Myzus persicae and Frankliniella schultzei. J Essent Oil Bear Plants 18(2):374–381. https://doi.org/10.1080/0972060X.2014.1001200
Datta S, Singh J, Singh S, Singh J (2016) Earthworms, pesticides and sustainable agriculture: a review. Environ Sci Pollut Res 23(9):8227–8243. https://doi.org/10.1007/s11356-016-6375-0
Finney DJ (1971) Probit analysis. Cambridge University Press, London
Gupta BM, Yadava CPS (1989) Role of coccinellid predators in regulating the aphid Myzus persicae (Sulzer) population on cumin in field. Ind J Entomol 51:24–28
He W, Huang B (2011) A review of chemistry and bioactivities of a medicinalspice: Foeniculum vulgare. J Med Plants Res 5:3595–3600
Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71(12):1587–1590. https://doi.org/10.1002/ps.4088
Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19(3):140–145. https://doi.org/10.1016/j.tplants.2013.11.005
Jansirani D, Nivethitha S, Singh MVP (2012) Production and utilization of vermicast using organic wastes and its impact on Trigonella foenum and Phaseolus aureus. Int J Res Biol Sci 2(4):187–189
Karabelas AJ, Plakas KV, Solomou ES, Drossou V, Sarigiannis DA (2009) Impact of European legislation on marketed pesticides—a view from the standpoint of health impact assessment studies. Environ Int 35(7):1096–1107. https://doi.org/10.1016/j.envint.2009.06.011
Lim SL, Lee LH, Wu TY (2016) Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J Clean Prod 111:262–278. https://doi.org/10.1016/j.jclepro.2015.08.083
Machalova Z, Sajfrtova M, Pavela R, Topiar M (2015) Extraction of botanical pesticides from Pelargonium graveolens using supercritical carbon dioxide. Ind Crop Prod 67:310–317. https://doi.org/10.1016/j.indcrop.2015.01.070
OECD (1984) Guideline for testing of chemicals no. 207. Earthworm, acute toxicity tests, OECD—guideline for testing chemicals. Paris, France
Parejo I, Viladomat F, Bastida J, Rosas-Romero A, Flerlage N, Burilo J, Codina C (2002) Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled Mediterranean herbs and aromatic plants. J Agric Food Chem 50(23):6882–6890. https://doi.org/10.1021/jf020540a
Pavela R (2014a) Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia Pacific Entomol 17(3):287–293. https://doi.org/10.1016/j.aspen.2014.02.001
Pavela R (2014b) Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind Crop Prod 60:247–258. https://doi.org/10.1016/j.indcrop.2014.06.030
Pavela R (2015a) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187. https://doi.org/10.1016/j.indcrop.2015.06.050
Pavela R (2015b) Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some EOs against Culex quinquefasciatus Say larvae. Parasitol Res 114(10):3835–3853. https://doi.org/10.1007/s00436-015-4614-9
Pavela R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci 52:229–241
Pavela R (2017) Extract from the roots of Saponaria officinalis as a potential acaricide against Tetranychus urticae. J Pest Sci 90(2):683–692. https://doi.org/10.1007/s10340-016-0828-6
Pavela R, Benelli G (2016) EOs as eco-friendly biopesticides? Challenges and constraints. Tr Plant Sci 21(12):1000–1007. https://doi.org/10.1016/j.tplants.2016.10.005
Pavela R, Govindarajan M (2017) The EO from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci 90(1):369–378. https://doi.org/10.1007/s10340-016-0763-6
Pavela R, Stepanycheva E, Shchenikova A, Chermenskaya T, Petrova M (2016a) Essential oils as prospective fumigants against Tetranychus urticae Koch. Ind Crop Prod 94:755–761
Pavela R, Žabka M, Bednář J, Tříska J, Vrchotová N (2016b) New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Ind Crop Prod 83:275–282
Pinheiro PF, de Queiroz VT, Rondelli VM, Costa AV, Marcelino TD, Pratissoli D (2013) Insecticidal activity of citronella grass essential oil on Frankliniella schultzei and Myzus persicae. Cienc Agrotecnol 37(2):138–144. https://doi.org/10.1590/S1413-70542013000200004
Piras A, Falconieri D, Porcedda S, Marongiu B, Goncalves MJ, Cavaleiro C, Salgueiro L (2014) Supercritical CO2 extraction of volatile oils from Sardinian Foeniculum vulgare ssp: vulgare (Apiaceae): chemical composition and biological activity. Nat Prod Res 28(21):1819–1821. https://doi.org/10.1080/14786419.2014.948874
Ponsankar A, Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin E-S, Selin-Rani S, Kalaivani K, Hunter WB, Alessandro RT, Abdel-Megeed A, Paik C-H, Duraipandiyan V, Al-Dhabi NA (2016) Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny. Ecotoxicol Environ Saf 133:260–270. https://doi.org/10.1016/j.ecoenv.2016.06.043
Rathore HS, Nollet LM (eds) (2012) Pesticides: evaluation of environmental pollution. CRC Press, Boca Raton. https://doi.org/10.1201/b11864
Rodriguez-Campos J, Dendooven L, Alvarez-Bernal D, Contreras-Ramos SM (2014) Potential of earthworm to accelerate removal of organic contaminants from soil: a review. Appl Soil Ecol 79:10–25. https://doi.org/10.1016/j.apsoil.2014.02.010
Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Chellappandian M, Edwin ES, Selin-Rani S, Kalaivani K, Hunter WB, Duraipandiyan V, Al-Dhabi NA (2017) Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny). Environ Sci Pollut Res Int (in press). https://doi.org/10.1007/s11356-017-9236-6
Wang Y, Cang T, Zhao X, Yu R, Chen L, Wu C, Wang Q (2012) Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol Environ Saf 79:122–128. https://doi.org/10.1016/j.ecoenv.2011.12.016