Essential biodiversity variables for mapping and monitoring species populations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).
Larigauderie, A. & Mooney, H. A. The Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services: moving a step closer to an IPCC-like mechanism for biodiversity. Curr. Opin. Environ. Sustain. 2, 9–14 (2010).
Mace, G. M. & Baillie, J. E. M. The 2010 biodiversity indicators: challenges for science and policy. Conserv. Biol. 21, 1406–1413 (2007).
Noss, R. F. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4, 355–364 (1990).
Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).
Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 95, 1431–1443 (2014).
Species populations. GEO BON Group on Earth Observations (GEO BON, accessed 12 July 2018); https://geobon.org/ebvs/working-groups/species-populations
Jarzyna, M. A. & Jetz, W. A near half-century of temporal change in different facets of avian diversity. Glob. Change Biol. 23, 2999–3011 (2017).
Keil, P., Storch, D. & Jetz, W. On the decline of biodiversity due to area loss. Nat. Commun. 6, 8837 (2015).
Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).
Latombe, G. et al. A vision for global monitoring of biological invasions. Biol. Conserv. https://doi.org/10.1016/j.biocon.2016.06.013 (2016).
Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).
Cardillo, M. et al. The predictability of extinction: biological and external correlates of decline in mammals. Proc. Biol. Sci. 275, 1441–1448 (2008).
McGeoch, M. A. & Latombe, G. Characterizing common and range expanding species. J. Biogeogr. 43, 217–228 (2016).
Schmeller, D. S., Evans, D., Lin, Y.-P. & Henle, K. The national responsibility approach to setting conservation priorities—recommendations for its use. J. Nat. Conserv. 22, 349–357 (2014).
Moilanen, A., Wilson, K.A. & Possingham, H. Spatial conservation prioritization: quantitative methods and computational tools. (Oxford University Press, 2009).
Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).
Mazaris, A. D. et al. Evaluating the connectivity of a protected areas’ network under the prism of global change: the efficiency of the European Natura 2000 network for four birds of prey. PLoS One 8, e59640 (2013).
Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. USA 106(Suppl 2), 19644–19650 (2009).
La Sorte, F. A. & Jetz, W. Tracking of climatic niche boundaries under recent climate change. J. Anim. Ecol. 81, 914–925 (2012).
Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106(Suppl 2), 19637–19643 (2009).
Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).
Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).
Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297 (2012).
Marsh, D. M. & Trenham, P. C. Current trends in plant and animal population monitoring. Conserv. Biol. 22, 647–655 (2008).
Schmeller, D. S., Henle, K., Loyau, A., Besnard, A. & Henry, P.-Y. Bird-monitoring in Europe - a first overview of practices, motivations and aims. Nat. Conserv. 2, 41–57 (2012).
Pereira, H.M. et al. in The GEO Handbook on Biodiversity Observation Networks 79–105 (Springer, 2017).
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).
Proença, V. et al. Global biodiversity monitoring: from data sources to Essential Biodiversity Variables. Biol. Conserv. 213, 253–263 (2016).
Turak, E. et al. Essential Biodiversity Variables for measuring change in global freshwater biodiversity. Biol. Conserv. 213, 272–279 (2017).
Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
Geijzendorffer, I. R. et al. Bridging the gap between biodiversity data and policy reporting needs: an essential biodiversity variables perspective. J. Appl. Ecol. 53, 1341–1350 (2015).
Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. Camb. Philos. Soc. 93, 600–625 (2018).
Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLoS One 7, e29715 (2012).
Guralnick, R., Walls, R. & Jetz, W. Humboldt Core – toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography 41, 713–725 (2017).
Williams, P. J. et al. An integrated data model to estimate spatiotemporal occupancy, abundance, and colonization dynamics. Ecology 98, 328–336 (2017).
MacKenzie, D. I. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, 1st edn. (Academic Press, 2005).
Andrewartha, H.G. & Birch, L.C. The Distribution and Abundance of Animals (Chicago University Press, 1954).
Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. ECOLOGY. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).
Hussey, N. E. et al. ECOLOGY. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).
Fithian, W., Elith, J., Hastie, T. & Keith, D. A. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol. Evol. 6, 424–438 (2015).
Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009).
Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Franklin, J. & Miller, J.A. Mapping Species Distributions: Spatial Inference and Prediction Vol. 338 (Cambridge University Press Cambridge, 2009).
Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Modell. 221, 467–478 (2010).
Peterson, A.T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).
Ballesteros-Mejia, L., Kitching, I. J., Jetz, W. & Beck, J. Putting insects on the map: near-global variation in sphingid moth richness along spatial and environmental gradients. Ecography 40, 698–708 (2017).
Hurlbert, A. H. & White, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett. 8, 319–327 (2005).
Ferrier, S. Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst. Biol. 51, 331–363 (2002).
Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–119 (2008).
MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).
Mertes, K. & Jetz, W. Disentangling scale dependencies in species environmental niches and distributions. Ecography 40, 1604–1615 (2017).
Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evo. 1, 0194 (2017).
Anderson, C. B. Biodiversity monitoring, earth observations and the ecology of scale. Ecol. Lett. 21, 1572–1585 (2018).
He, K. S. et al. Will remote sensing shape the next generation of species distribution models? Remote Sens. Ecol. Conserv. 1, 4–18 (2015).
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).
Tuanmu, M.-N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 1329–1339 (2015).
Muller-Karger, F. et al. Satellite remote sensing in support of an integrated ocean observing system. IEEE Geosci. Remote Sens. Mag. 1, 8–18 (2013).
Fretwell, P. T. & Trathan, P. N. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr. 18, 543–552 (2009).
Asner, G. P. & Martin, R. E. Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219 (2016).
Basher, Z. & Costello, M. J. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ 4, e1713 (2016).
Duffy, J. E. et al. Envisioning a marine biodiversity observation network. Bioscience 63, 350–361 (2013).
Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5, 211 (2018).
Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).
Kaschner, K., Watson, R., Trites, A. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).
Tuanmu, M.-N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).
Ficetola, G. F., Rondinini, C., Bonardi, A., Baisero, D. & Padoa-Schioppa, E. Habitat availability for amphibians and extinction threat: a global analysis. Divers. Distrib. 21, 302–311 (2014).
Urban, M. C., Zarnetske, P. L. & Skelly, D. K. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. NY Acad. Sci. 1297, 44–60 (2013).
Wisz, M. S. et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol. Rev. Camb. Philos. Soc. 88, 15–30 (2013).
Ferrier, S. & Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43, 393–404 (2006).
Pollock, L. J. et al. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 5, 397–406 (2014).
Thorson, J. T. et al. Joint dynamic species distribution models: a tool for community ordination and spatio‐temporal monitoring. Glob. Ecol. Biogeogr. 25, 1144–1158 (2016).
Kappes, H., Sundermann, A. & Haase, P. High spatial variability biases the space-for-time approach in environmental monitoring. Ecol. Indic. 10, 1202–1205 (2010).
La Sorte, F. A., Lee, T. M., Wilman, H. & Jetz, W. Disparities between observed and predicted impacts of climate change on winter bird assemblages. Proc. Biol. Sci. 276, 3167–3174 (2009).
Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).
Ferrier, S., Jetz, W. & Scharlemann, J. in The GEO Handbook on Biodiversity Observation Networks 239–257 (Springer, 2017).
Franklin, J. Moving beyond static species distribution models in support of conservation biogeography. Divers. Distrib. 16, 321–330 (2010).
Royle, J. A. & Kéry, M. A Bayesian state-space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).
Merow, C., Lafleur, N., Silander, J. A. Jr., Wilson, A. M. & Rubega, M. Developing dynamic mechanistic species distribution models: predicting bird-mediated spread of invasive plants across northeastern North America. Am. Nat. 178, 30–43 (2011).
MacKenzie, D. I., Nichols, J. D., Seamans, M. E. & Gutiérrez, R. J. Modeling species occurrence dynamics with multiple states and imperfect detection. Ecology 90, 823–835 (2009).
Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).
Hoskins, A. J. et al. Supporting global biodiversity assessment through high-resolution macroecological modelling: Methodological underpinnings of the BILBI framework. Preprint at https://doi.org/10.1101/309377 (2018).
Rodhouse, T. J. et al. Establishing conservation baselines with dynamic distribution models for bat populations facing imminent decline. Divers. Distrib. 21, 1401–1413 (2015).
Thorson, J. T. & Barnett, L. A. Comparing estimates of abundance trends and distribution shifts using single-and multispecies models of fishes and biogenic habitat. ICES J. Mar. Sci. 74, 1311–1321 (2017).
Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222, 1810–1819 (2011).
Svenning, J.-C. & Skov, F. Ice age legacies in the geographical distribution of tree species richness in Europe. Glob. Ecol. Biogeogr. 16, 234–245 (2007).
Latimer, A. M., Banerjee, S., Sang, H. Jr., Mosher, E. S. & Silander, J. A. Jr. Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States. Ecol. Lett. 12, 144–154 (2009).
Merow, C., Wilson, A. M. & Jetz, W. Integrating occurrence data and expert maps for improved species range predictions. Glob. Ecol. Biogeogr. 26, 243–258 (2017).
Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob. Ecol. Biogeogr. 23, 99–112 (2014).
Jiménez-Valverde, A. & Lobo, J. M. Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol. 31, 361–369 (2007).
Dorazio, R. M., Royle, J. A., Söderström, B. & Glimskär, A. Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87, 842–854 (2006).
Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2013).
Lahoz-Monfort, J. J., Guillera-Arroita, G. & Wintle, B. A. Imperfect detection impacts the performance of species distribution models. Glob. Ecol. Biogeogr. 23, 504–515 (2014).
Lobo, J. M., Jiménez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103–114 (2010).
Jones, J. P. G. Monitoring species abundance and distribution at the landscape scale. J. Appl. Ecol. 48, 9–13 (2011).
Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence-absence data or point counts. Ecology 84, 777–790 (2003).
Renner, I. W. & Warton, D. I. Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69, 274–281 (2013).
Koshkina, V. et al. Integrated species distribution models: combining presence-background data and site-occupany data with imperfect detection. Methods Ecol. Evol. 8, 420–430 (2017).
Dorazio, R. M. Accounting for imperfect detection and survey bias in statistical analysis of presence‐only data. Glob. Ecol. Biogeogr. 23, 1472–1484 (2014).
Keil, P., Belmaker, J., Wilson, A. M., Unitt, P. & Jetz, W. Downscaling of species distribution models: a hierarchical approach. Methods Ecol. Evol. 4, 82–94 (2013).
Keil, P., Wilson, A. M. & Jetz, W. Uncertainty, priors, autocorrelation and disparate data in downscaling of species distributions. Divers. Distrib. 20, 797–812 (2014).
Hui, C. et al. Extrapolating population size from the occupancy-abundance relationship and the scaling pattern of occupancy. Ecol. Appl. 19, 2038–2048 (2009).
Barwell, L. J., Azaele, S., Kunin, W. E. & Isaac, N. J. Can coarse‐grain patterns in insect atlas data predict local occupancy? Divers. Distrib. 20, 895–907 (2014).
Golding, N. & Purse, B. V. Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods Ecol. Evol. 7, 598–608 (2016).
Beale, C. M. & Lennon, J. J. Incorporating uncertainty in predictive species distribution modelling. Phil. Trans. R. Soc. Lond. B 367, 247–258 (2012).
Pereira, H. M., Freyhof, J., Ferrier, S. & Jetz, W. Global Biodiversity Change Indicators 1–18 (GEO Biodiversity Observation Network, Leipzig, Germany, 2015).
Schipper, A. M. et al. Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biol 22, 3948–3959 (2016).
Wilson, E.O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).
Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2017).
Edwards, J. L. Research and Societal Benefits of the Global Biodiversity Information Facility. Bioscience 54, 486–487 (2004).
Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015).
Meyer, C., Jetz, W., Guralnick, R. P., Fritz, S. A. & Kreft, H. Range geometry and socio-economics dominate species-level biases in occurrence information. Glob. Ecol. Biogeogr. 25, 1181–1193 (2016).
Honrado, J. P., Pereira, H. M. & Guisan, A. Fostering integration between biodiversity monitoring and modelling. J. Appl. Ecol. 53, 1299–1304 (2016).
Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1, 0176 (2017).
Steenweg, R. et al. Scaling‐up camera traps: monitoring the planet’s biodiversity with networks of remote sensors. Front. Ecol. Environ. 15, 26–34 (2016).
Robertson, M., Cumming, G. & Erasmus, B. Getting the most out of atlas data. Divers. Distrib. 16, 363–375 (2010).
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Costello, M. J. & Wieczorek, J. Best practice for biodiversity data management and publication. Biol. Conserv. 173, 68–73 (2014).