Eshelby tensors and effective stiffness of one-dimensional orthorhombic quasicrystal composite materials containing ellipsoidal particles
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shechtman, D., Blech, I.A., Gratias, D., et al.: metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)
Shechtman, D., Blech, I.A.: The microstructure of rapidly solidified Al6Mn. Metall. Trans. A 16(6), 1005–1012 (1985)
Huang, Y.Z., Li, Y., Zhang, L.L., et al.: Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach. Acta Mech. 231(6), 2351 (2020)
Lou, F., Cao, T., Qin, T.Y., et al.: Plane analysis for an inclusion in 1D hexagonal quasicrystal using the hypersingular integral equation method. Acta Mech. Solida Sin. 32(2), 249–260 (2019)
Wang, Y.B., Guo, J.H.: Effective electroelastic constants for three-phase confocal elliptical cylinder model in piezoelectric quasicrystal composites. Appl. Math. Mech. 39(6), 797–812 (2018)
Gao, Y., Ricoeur, A.: Three-dimensional analysis of a spheroidal inclusion in a two-dimensional quasicrystal body. Philos. Mag. 92(34), 4334–4353 (2012)
Yin, H.M., Zhao, Y.T.: Introduction to the Micromechanics of Composite Materials[. CRC Press, Boca Raton (2016)
Yin, H.M., Song, G., Zhang, L.L., et al.: The Inclusion-Based Boundary Element Method (iBEM). Academic Press, Cambridge (2022)
Wu, C.L., Zhang, L.L., Song, G., et al.: Inclusion-based boundary element method for virtual experiments of particulate composites containing arbitrarily shaped inhomogeneities. Eng. Anal. Bound. Elem. 135, 93–114 (2022)
Song, G., Wang, L., Deng, L., et al.: Mechanical characterization and inclusion based boundary element modeling of lightweight concrete containing foam particles. Mech. Mater. 91((DEC.PT.1)), 208–225 (2015)
Liu, Y.J., Song, G., Yin, H.M.: Boundary effect on the elastic field of a semi-infinite solid containing inhomogeneities. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 2179 (2015)
Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(1226), 376–396 (1957)
Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 252(1271), 561–569 (1959)
Eshelby, J.W.: Elastic inclusions and inhomogeneities. Progress. Solid Mech. 2, 87–140 (1961)
Sulim, G.T.: Antiplane problem for a system of linear inclusions in an isotropic medium. J. Appl. Math. Mech. 45(2), 223–230 (1981)
Tao, F.M., Zhang, M.H., Tang, R.J.: The interaction problem between the elastic line inclusions. Appl. Math. Mech. 23, 371–379 (2002)
Kaloerov, S.A., Boronenko, O.I.: Magnetoelastic problem for a bodywith periodic elastic inclusions. Int. Appl. Mech. 42(9), 989–996 (2006)
Rudoi, E.M.: Invariant integrals in a planar problem of elasticity theory for bodies with rigid inclusions and cracks. J. Appl. Ind. Math. 6(3), 371–380 (2012)
Lee, Y.G., Zou, W.N., Pan, E.: Eshelby’s problem of polygonal inclusions with polynomial eigenstrains in an anisotropic magneto-electro-elastic full plane. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 471(2179), 20140827 (2015)
Mura, T.: Micromechanics of defects in solids. Distributors for the U.S. and Canada, Kluwer Academic Publishers (1987)
Qin, S., Fan, H., Mura, T.: The eigenstrain formulation for classical plates. Int. J. Solids Struct. 28(3), 363–372 (1991)
Rahman, M.: The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain. J. Appl. Mech. Trans. ASME 69(5), 593–601 (2002)
Huang, J.H., Chiu, Y.H., Liu, H.K.: Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions. J. Appl. Phys. 83(10), 5364–5370 (1998)
Jiang, X., Pan, E.: Exact solution for 2D polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and bimaterial-planes. Int. J. Solids Struct. 41(16–17), 4361–4382 (2004)
Hwu, C., Chen, W.R., Lo, T.H.: Green’s function of anisotropic elastic solids with piezoelectric or magneto-electro-elastic inclusions. Int. J. Fract. 215(1–2), 91–103 (2019)
Cao, T., Fu, X.Y., Zhang, L.L., et al.: Eshelby tensors for three-dimensional cubic quasicrystal materials with ellipsoidal inclusions. Chin. J. Solid Mech. 43(6), 750–762 (2022)
Pierce, F.S., Guo, Q., Poon, S.J.: Enhanced insulatorlike electron transport behavior of thermally tuned quasicrystalline states of Al–Pd–Re alloys. Phys. Rev. Lett. 73(16), 2220 (1994)
Schurack, F., Eckert, J., Schultz, L.: Al–Mn–Ce quasicrystalline composites: phase formation and mechanical properties. Philos. Mag. 83(7), 807–825 (2003)
An, P.T., Aoki, K., Inoue, A., et al.: Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys. J. Mater. Res. 8(1), 5–7 (1993)
Fleury, E., Lee, S.M., Choi, G., et al.: Comparison of Al–Cu–Fe quasicrystalline particle reinforced Al composites fabricated by conventional casting and extrusion. J. Mater. Sci. 36(4), 963–970 (2001)
Tsai, A.P., Aoki, K., Inoue, A., et al.: Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys. J. Mater. Res. 8, 5–7 (1993)
Inoue, A., Kimura, H., Yamaura, S.-I.: Production and mechanical properties of aluminum alloys with dispersed nanoscale quasicrystalline and amorphous particles. Met. Mater. Int. 9, 527–536 (2003)
Lu, J.L., Lin, X., Liao, H.L., et al.: Compression behaviour of quasicrystal/Al composite with powder mixture driven layered microstructure prepared by selective laser melting. Opt. Laser Technol. 129, 106277 (2020)
Wang, J.B., Mancini, L., Wang, R.H., et al.: Phonon- and phason-type spherical inclusions in icosahedral quasicrystals. J. Phys. Condens. Matter 15(24), L363–L370 (2003)
Wang, X.: Eshelby’s problem of an inclusion of arbitrary shape in a decagonal quasicrystalline plane or half-plane. Int. J. Eng. Sci. 42(17/18), 1911–1930 (2004)
Guo, J., Zhang, Z., Xing, Y., et al.: Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Philos. Mag. 96(4), 1–21 (2016)
Guo, J., Pan, E.: Three-phase cylinder model of one-dimensional hexagonal piezoelectric quasi-crystal composites. J. Appl. Mech. 83(8), 081007 (2016)
Hu, Z.M., Zhang, L.L., Gao, Y.: Eshelby tensors for one-dimensional piezoelectric quasicrystal materials with ellipsoidal inclusions. In: 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), pp. 474–479. IEEE (2021)
Zhang, Z., Ding, S., Li, X.: A spheroidal inclusion within a 1D hexagonal piezoelectric quasicrystal. Arch. Appl. Mech. 90(5), 1039–1058 (2020)
Li, S., Li, L.H.: Effective elastic properties of one-dimensional hexagonal quasicrystal composites. Appl. Math. Mech. (Engl. Edn.) 42(10), 1439–1448 (2021)
Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Springer, Heidelberg (2011)
Barnett, D.M., Lothe, J.: Dislocation and line charges in anisotropic piezoelectric insulators. Physica Status Solidi B Basic Res. 67(1), 105–111 (1975)
Deeg, W.F.J.: The analysis of dislocation, crack, and inclusion problems in piezoelectric slids. Ph.D. dissertion, Stanford University (1980)
Dunn, J.M.L.: Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. Int. J. Eng. Sci. 32(1), 119–131 (1994)
Diaz, J.B., Synge, J.L.: The hypercircle in mathematical physics. Bull. Am. Math. Soc. 65(2), 103–108 (1959)
Huang, J.H., Yu, J.S.: Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4(11), 1169–1182 (1994)
Fan, T.Y., Yiu, W.M.: Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Appl. Mech. Rev. 57(5), 325–343 (2004)
Huang, J.H., Kuo, W.S.: Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44(12), 4889–4898 (1996)