Eshelby tensors and effective stiffness of one-dimensional orthorhombic quasicrystal composite materials containing ellipsoidal particles

Archive of Applied Mechanics - Tập 93 Số 8 - Trang 3275-3295 - 2023
Zhiming Hu1, Feng Xing2, Ming Xiang2, Gangbing Song3, Liangliang Zhang1, Yang Gao1
1College of Science, China Agricultural University, Beijing, 100083, People’s Republic of China
2College of Engineering, China Agricultural University, Beijing, 100083, People’s Republic of China
3Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shechtman, D., Blech, I.A., Gratias, D., et al.: metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984)

Shechtman, D., Blech, I.A.: The microstructure of rapidly solidified Al6Mn. Metall. Trans. A 16(6), 1005–1012 (1985)

Huang, Y.Z., Li, Y., Zhang, L.L., et al.: Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach. Acta Mech. 231(6), 2351 (2020)

Lou, F., Cao, T., Qin, T.Y., et al.: Plane analysis for an inclusion in 1D hexagonal quasicrystal using the hypersingular integral equation method. Acta Mech. Solida Sin. 32(2), 249–260 (2019)

Wang, Y.B., Guo, J.H.: Effective electroelastic constants for three-phase confocal elliptical cylinder model in piezoelectric quasicrystal composites. Appl. Math. Mech. 39(6), 797–812 (2018)

Gao, Y., Ricoeur, A.: Three-dimensional analysis of a spheroidal inclusion in a two-dimensional quasicrystal body. Philos. Mag. 92(34), 4334–4353 (2012)

Yin, H.M., Zhao, Y.T.: Introduction to the Micromechanics of Composite Materials[. CRC Press, Boca Raton (2016)

Yin, H.M., Song, G., Zhang, L.L., et al.: The Inclusion-Based Boundary Element Method (iBEM). Academic Press, Cambridge (2022)

Wu, C.L., Zhang, L.L., Song, G., et al.: Inclusion-based boundary element method for virtual experiments of particulate composites containing arbitrarily shaped inhomogeneities. Eng. Anal. Bound. Elem. 135, 93–114 (2022)

Song, G., Wang, L., Deng, L., et al.: Mechanical characterization and inclusion based boundary element modeling of lightweight concrete containing foam particles. Mech. Mater. 91((DEC.PT.1)), 208–225 (2015)

Liu, Y.J., Song, G., Yin, H.M.: Boundary effect on the elastic field of a semi-infinite solid containing inhomogeneities. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 2179 (2015)

Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(1226), 376–396 (1957)

Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 252(1271), 561–569 (1959)

Eshelby, J.W.: Elastic inclusions and inhomogeneities. Progress. Solid Mech. 2, 87–140 (1961)

Sulim, G.T.: Antiplane problem for a system of linear inclusions in an isotropic medium. J. Appl. Math. Mech. 45(2), 223–230 (1981)

Tao, F.M., Zhang, M.H., Tang, R.J.: The interaction problem between the elastic line inclusions. Appl. Math. Mech. 23, 371–379 (2002)

Kaloerov, S.A., Boronenko, O.I.: Magnetoelastic problem for a bodywith periodic elastic inclusions. Int. Appl. Mech. 42(9), 989–996 (2006)

Rudoi, E.M.: Invariant integrals in a planar problem of elasticity theory for bodies with rigid inclusions and cracks. J. Appl. Ind. Math. 6(3), 371–380 (2012)

Lee, Y.G., Zou, W.N., Pan, E.: Eshelby’s problem of polygonal inclusions with polynomial eigenstrains in an anisotropic magneto-electro-elastic full plane. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 471(2179), 20140827 (2015)

Mura, T.: Micromechanics of defects in solids. Distributors for the U.S. and Canada, Kluwer Academic Publishers (1987)

Mura, T., Shodja, H.M., Hirose, Y.: Inclusion problems. Appl. Mech. Rev. 49(10S), 118 (1996)

Qin, S., Fan, H., Mura, T.: The eigenstrain formulation for classical plates. Int. J. Solids Struct. 28(3), 363–372 (1991)

Rahman, M.: The isotropic ellipsoidal inclusion with a polynomial distribution of eigenstrain. J. Appl. Mech. Trans. ASME 69(5), 593–601 (2002)

Huang, J.H., Chiu, Y.H., Liu, H.K.: Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions. J. Appl. Phys. 83(10), 5364–5370 (1998)

Jiang, X., Pan, E.: Exact solution for 2D polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and bimaterial-planes. Int. J. Solids Struct. 41(16–17), 4361–4382 (2004)

Hwu, C., Chen, W.R., Lo, T.H.: Green’s function of anisotropic elastic solids with piezoelectric or magneto-electro-elastic inclusions. Int. J. Fract. 215(1–2), 91–103 (2019)

Cao, T., Fu, X.Y., Zhang, L.L., et al.: Eshelby tensors for three-dimensional cubic quasicrystal materials with ellipsoidal inclusions. Chin. J. Solid Mech. 43(6), 750–762 (2022)

Pierce, F.S., Guo, Q., Poon, S.J.: Enhanced insulatorlike electron transport behavior of thermally tuned quasicrystalline states of Al–Pd–Re alloys. Phys. Rev. Lett. 73(16), 2220 (1994)

Schurack, F., Eckert, J., Schultz, L.: Al–Mn–Ce quasicrystalline composites: phase formation and mechanical properties. Philos. Mag. 83(7), 807–825 (2003)

An, P.T., Aoki, K., Inoue, A., et al.: Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys. J. Mater. Res. 8(1), 5–7 (1993)

Fleury, E., Lee, S.M., Choi, G., et al.: Comparison of Al–Cu–Fe quasicrystalline particle reinforced Al composites fabricated by conventional casting and extrusion. J. Mater. Sci. 36(4), 963–970 (2001)

Tsai, A.P., Aoki, K., Inoue, A., et al.: Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys. J. Mater. Res. 8, 5–7 (1993)

Inoue, A., Kimura, H., Yamaura, S.-I.: Production and mechanical properties of aluminum alloys with dispersed nanoscale quasicrystalline and amorphous particles. Met. Mater. Int. 9, 527–536 (2003)

Lu, J.L., Lin, X., Liao, H.L., et al.: Compression behaviour of quasicrystal/Al composite with powder mixture driven layered microstructure prepared by selective laser melting. Opt. Laser Technol. 129, 106277 (2020)

Wang, J.B., Mancini, L., Wang, R.H., et al.: Phonon- and phason-type spherical inclusions in icosahedral quasicrystals. J. Phys. Condens. Matter 15(24), L363–L370 (2003)

Wang, X.: Eshelby’s problem of an inclusion of arbitrary shape in a decagonal quasicrystalline plane or half-plane. Int. J. Eng. Sci. 42(17/18), 1911–1930 (2004)

Guo, J., Zhang, Z., Xing, Y., et al.: Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Philos. Mag. 96(4), 1–21 (2016)

Guo, J., Pan, E.: Three-phase cylinder model of one-dimensional hexagonal piezoelectric quasi-crystal composites. J. Appl. Mech. 83(8), 081007 (2016)

Hu, Z.M., Zhang, L.L., Gao, Y.: Eshelby tensors for one-dimensional piezoelectric quasicrystal materials with ellipsoidal inclusions. In: 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), pp. 474–479. IEEE (2021)

Zhang, Z., Ding, S., Li, X.: A spheroidal inclusion within a 1D hexagonal piezoelectric quasicrystal. Arch. Appl. Mech. 90(5), 1039–1058 (2020)

Li, S., Li, L.H.: Effective elastic properties of one-dimensional hexagonal quasicrystal composites. Appl. Math. Mech. (Engl. Edn.) 42(10), 1439–1448 (2021)

Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Springer, Heidelberg (2011)

Barnett, D.M., Lothe, J.: Dislocation and line charges in anisotropic piezoelectric insulators. Physica Status Solidi B Basic Res. 67(1), 105–111 (1975)

Deeg, W.F.J.: The analysis of dislocation, crack, and inclusion problems in piezoelectric slids. Ph.D. dissertion, Stanford University (1980)

Dunn, J.M.L.: Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. Int. J. Eng. Sci. 32(1), 119–131 (1994)

Diaz, J.B., Synge, J.L.: The hypercircle in mathematical physics. Bull. Am. Math. Soc. 65(2), 103–108 (1959)

Huang, J.H., Yu, J.S.: Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4(11), 1169–1182 (1994)

Fan, T.Y., Yiu, W.M.: Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Appl. Mech. Rev. 57(5), 325–343 (2004)

Huang, J.H., Kuo, W.S.: Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater. 44(12), 4889–4898 (1996)

Ting, T.C.T.: Positive definiteness of anisotropic elastic constants. Math. Mech. Solids 1(3), 301–314 (1996)