Erythroid-specific 5-aminolevulinate synthase protein is stabilized by low oxygen and proteasomal inhibition

Biochemistry and Cell Biology - Tập 83 Số 5 - Trang 620-630 - 2005
Mohamed Abu‐Farha1, Jacques Niles, William G. Willmore
1Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada

Tóm tắt

5-aminolevulinate synthase (ALAS; E.C. 2.3.1.37) catalyzes the first and rate-limiting step of heme synthesis within the mitochondria. Two isozymes of ALAS, encoded by separate genes, exist. ALAS1 is ubiquitously expressed and provides heme for cytochromes and other hemoproteins. ALAS2 is expressed exclusively in erythroid cells and synthesizes heme specifically for haemoglobin. A database search for proteins potentially regulated by oxygen tension revealed that ALAS2 contained a sequence of amino acids (LXXLAP where L is leucine, X is any amino acid, A is alanine, and P is proline) not occurring in ALAS1, which may be hydroxylated under normoxic conditions (21% O2) and target the enzyme for ubiquitination and degradation by the proteasome. We examined protein turnover of ALAS2 in the presence of cycloheximide in K562 cells. Normoxic ALAS2 had a turnover time of approximately 36 h. Hypoxia (1% O2) and inhibition of the proteasome increased both the stability and the specific activity of ALAS2 (greater than 2- and 7-fold, respectively, over 72 h of treatment). Mutation of a key proline within the LXXLAP sequence of ALAS2 also stabilized the protein beyond 36 h under normoxic conditions. The von Hippel-Lindau (vHL) protein was immunoprecipitated with FLAG epitope-tagged ALAS2 produced in normoxic cells but not in hypoxic cells, suggesting that the ALAS2 is hydroxylated under normoxic conditions and targeted for ubiquitination by the E3 ubiquitin ligase system. ALAS2 could also be ubiquitinated under normoxia using an in vitro ubiquitination assay. The present study provides evidence that ALAS2 is broken down under normoxic conditions by the proteasome and that the prolyl-4-hydroxylase/vHL E3 ubiquitin ligase pathway may be involved.Key words: erythroid-specific 5-aminolevulinate synthase, hypoxia, hydroxylation, prolyl-4-hydroxylases, E3 ubiquitin ligases, von Hippel-Lindau protein, proteasome.

Từ khóa


Tài liệu tham khảo

Baboshina O.V., 2001, J. Biol. Chem., 276, 39428, 10.1074/jbc.M106967200

Bichet S., 1999, FASEB J., 13, 285, 10.1096/fasebj.13.2.285

Bruick R.K., 2003, Genes Dev., 17, 2614, 10.1101/gad.1145503

Bruick R.K., 2001, Science (Wash. D.C.), 294, 1337, 10.1126/science.1066373

Davis R.G., 2000, Biochem. J., 346, 455, 10.1042/bj3460455

Denizot F., 1986, J. Immunol. Methods, 89, 271, 10.1016/0022-1759(86)90368-6

Fujita H., 1991, J. Biol. Chem., 266, 17494, 10.1016/S0021-9258(19)47399-7

Goodfellow B.J., 2001, FEBS Lett., 503, 325, 10.1016/S0014-5793(01)02818-6

Hofer T., 2003, Blood, 101, 348, 10.1182/blood-2002-03-0773

Hunter G.A., 1995, Anal. Biochem., 226, 221, 10.1006/abio.1995.1217

Ivan M., 2001, Science (Wash. D.C.), 292, 464, 10.1126/science.1059817

Iwai K., 1999, Proc. Natl. Acad. Sci. U.S.A., 96, 12436, 10.1073/pnas.96.22.12436

Jaakkola P., 2001, Science (Wash. D.C.), 292, 468, 10.1126/science.1059796

Kageyama Y., 2004, FASEB J., 18, 1028, 10.1096/fj.03-1233fje

Kawasaki N., 1996, Arch. Biochem. Biophys., 328, 289, 10.1006/abbi.1996.0175

Kawasaki N., 1998, J. Chromatogr. B Biomed. Sci. Appl., 705, 193, 10.1016/S0378-4347(97)00511-2

Kramer M.F., 2000, Gene, 247, 153, 10.1016/S0378-1119(00)00103-7

Kuznetsova A.V., 2003, Proc. Natl. Acad. Sci. U.S.A., 100, 2706, 10.1073/pnas.0436037100

Lathrop J.T., 1993, Science (Wash. D.C.), 259, 522, 10.1126/science.8424176

Lee D.H., 1998, Trends Cell Biol., 8, 397, 10.1016/S0962-8924(98)01346-4

Lisztwan J., 1999, Genes Dev., 13, 1822, 10.1101/gad.13.14.1822

Masson N., 2003, J. Cell Sci., 116, 3041, 10.1242/jcs.00655

Masson N., 2001, EMBO J., 20, 5197, 10.1093/emboj/20.18.5197

Maxwell P.H., 2004, Cell Cycle, 3, 156, 10.4161/cc.3.2.616

Maxwell P.H., 1999, Nature (London), 399, 271, 10.1038/20459

Metzen E., 2004, Biol. Chem., 385, 223, 10.1515/BC.2004.016

Mosmann T., 1983, J. Immunol. Methods, 65, 55, 10.1016/0022-1759(83)90303-4

Sadlon T.J., 1999, Int. J. Biochem. Cell Biol., 31, 1153, 10.1016/S1357-2725(99)00073-4

Safran M., 2003, J. Clin. Investig., 111, 779, 10.1172/JCI200318181

Semenza G., 2002, Biochem. Pharmacol., 64, 993, 10.1016/S0006-2952(02)01168-1

Surinya K.H., 1997, J. Biol. Chem., 272, 26585, 10.1074/jbc.272.42.26585

Wenger R.H., 2002, FASEB J., 16, 1151, 10.1096/fj.01-0944rev

Yu F., 2001, Proc. Natl. Acad. Sci. U.S.A., 98, 9630, 10.1073/pnas.181341498

Zoller H., 2002, Br. J. Haematol., 118, 619, 10.1046/j.1365-2141.2002.03626.x