Error compensation in high-speed milling of deep cavity dies and molds based on the lengthened shrink-fit holder
Tóm tắt
In high speed milling of the dies and molds characterized by large-scale and deep cavities with the lengthened shrink-fit holder (LSFH), the machining error caused by the tool deflection is not allowed to be ignored. The deformation of the LSFH and cutting tool are predicted, and at the same time the machining error caused by this deformation are predicted too based on the milling force prediction model and the finite element model. Taking into account the complex mutual coupling between milling force and the deformation, an error compensation method is proposed based on a balancing iterative algorithm. The compensation tool path is obtained and the off-line machining error compensation is achieved. Milling example shows that the machining error after compensation less 77.4 % than that of no compensation. The results demonstrate that the proposed error compensation method is reasonable and can greatly reduce the machining error.
Tài liệu tham khảo
Arizmendi, M, Fernández, J, López de Lacalle, LN. (2008). Model development for the prediction of surface topography generated by ball-end mills taking into account the tool parallel axis offset. Experimental validation. CIRP Annals - Manufacturing Technology, 57(1), 101-104.
Frederic, L, Aurelian, V, & Bernard, S. (2009). Finite element analysis and contact modeling considerations of interference fits for fretting fatigue strength calculations. Simulation Modelling Practice and Theory, 17(10), 1587–1602.
Lamikiz, A, López de Lacalle, LN, Ocerin, O, Díez, D, & Maidagan, E. (2008). The Denavit and Hartenberg approach applied to evaluate the consequences in the tool tip position of geometrical errors in five-axis milling centres. The International Journal of Advanced Manufacturing Technology, 37(1–2), 122–139.
Law, KMY, & Geddam, A. (2003). Error compensation in the end milling of pockets: methodology. Journal of Materials Processing Technology, 139, 238–244.
Lim, EM, & Meng, CH. (1995). The prediction of dimensional error for sculptured surface productions using ball end milling process, Part2: Surface generation model and experimental verification. International Journal of machine Tools and Manufacture, 35(8), 1171–1185.
López de Lacalle, LN, Lamikiz, A, Munoa, J, Salgado, MA, & Sanchez, JA. (2006). Improving the high-speed finishing of forming tools for advanced high-strength steels (AHSS). The International Journal of Advanced Manufacturing Technology, 29, 49–63.
Ryu, SH, Lee, HS, & Chu, CN. (2003). The form error prediction in side wall machining considering tool deflection. International Journal of machine Tools and Manufacture, 43, 1405–1411.
Salgado, MA, López de Lacalle, LN, &Lamikiz, A. (2005). Evaluation of the stiffness chain on the deflection of end-mills under cutting forces. International Journal of Machine Tools and Manufacture, 45, 727-739.
Tony, L, & Schmitz, TL. (2007). Shrink fit tool holder connection stiffness/damping modeling for frequency response prediction in milling. International Journal of Machine Tools and Manufacture, 47(9), 1368–1380.
Zhang, ZW. (2006). High speed, high accuracy shrink-fit holder system. Modern Components, 25(2), 76–78.
Zhang, BL, & Pan, SS. (1997). Linear motor and its application in ultra-high-speed machine tools. Chinese Mechanical Engineering, 4, 85–88.
Zhang, BL, Yang, QD, & Chen, CN. (2002). High-speed cutting technology and its application. Beijing, China: Mechanical Industry Press.
Zhou, HM, Wang, CY, Deng, JX, & Zhao, ZY. (2010). Milling force prediction of the matching of lengthened shrink-fit holder and cutting tool in high speed milling. Mechanical Science and Technology for Aerospace Engineering, 29(4), 504–508.
Zhou, HM, Wang, CY, Deng, JX, & Peng, RT. (2012). Radial grip rigidity of the matching of lengthened shrink-fit holder and cutter in high-speed milling. Chinese Journal of Mechanical Engineering, 25(1), 179–183.