Error bounds for septic Hermite interpolation and its implementation to study modified Burgers’ equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nariboli, G. A., Lin, W. C.: A new type of Burgers’ equation. J. Appl. Math. Mech. 53, 505–510 (1973)
Gorschkov, K. A., Ostrovsky, L. A., Pelinovsky, E. N.: Some problems of asymptotic theory of nonlinear waves. Proc. IEEE 62, 1511–1517 (1974)
Harris, S. E.: Sonic shocks governed by the modified Burgers’ equation. Eur. J. Appl. Math. 7, 201–222 (1996)
Sachdev, P. L., Rao, C. S.: N-wave solution of modified Burgers’ equation. Appl. Math. Lett. 13, 1–6 (2000)
Sachdev, P. L., Rao, C. S., Enflo, B. O.: Large-time asymptotics for periodic solutions of the modified Burgers’ equation. Stud. Appl. Math. 114, 307–323 (2005)
Inan, I. E., Ugurlu, Y.: Exp-function method for the exact solutions of fifth order KdV equation and modified Burgers’ equation. Appl. Math. Comput. 217, 1294–1299 (2010)
Roshan, T., Bhamra, K. S.: Numerical solutions of the modified Burgers’ equation by Petrov–Galerkin method. Appl. Math. Comput. 218 3673–3679 (2011)
Ramadan, M. A., El-Danaf, T. S.: Numerical treatment for the modified Burgers’ equation. Math. Comput. Simul., 70 90–98 (2005)
Irk, D.: Sextic B-spline collocation method for the modified Burgers’ equation. Kybernetes 38, 1599–1620 (2009)
Bratsos, A. G.: A fourth-order numerical scheme for solving the modified Burgers’ equation. Comput. Math. Appl. 60, 1393–1400 (2010)
Kutluay, S., Ucar, Y., Yagmurlu, N. M.: Numerical solutions of the modified Burgers’ equation by a cubic B-spline collocation method. B Malays Math. Sci. So. 39, 1603–1614 (2016)
Arora, S., Kaur, I.: An efficient scheme for numerical solution of Burgers’ equation using quintic Hermite interpolating polynomials. Arab. J. Math. 5, 23–34 (2016)
Arora, S., Kaur, I., Tilahun, W.: An exploration of quintic Hermite splines to solve Burgers’ equation. Arab. J. Math. 9, 19–36 (2020)
Karakoc, S. B. G., Bashan, A., Geyikli, T.: Two different methods for numerical solution of the modified Burgers’ equation. Sci. World J. 5, 1–13 (2014)
Bashan, A., Karakoc, S. B. G., Geyikli, T.: B-spline differential quadrature method for the modified Burgers’ equation. Cankaya Uni. J. Sci. Eng. 12, 001–013 (2015)
Nagaveni, K.: A new numerical approach for the solution of the modified Burgers’ equation using Haar wavelet collocation method. Glob. J. Pure Appl. Math. 15, 829–839 (2019)
Nair, L. C., Awasthi, A.: Quintic trigonometric spline based numerical scheme for nonlinear modified Burgers’ equation. Numer. Meth. Part D E. 35, 1269–1289 (2019)
Lakshmi, C., Awasthi, A.: Robust Numerical scheme for nonlinear modified Burgers equation. I J. Comput. Math. 95, 1910–1926 (2018)
Mittal, A. K., Ganaie, I. A., Kukreja, V. K., Parumasur, N., Singh, P.: Solution of diffusion-dispersion models using a computationally effcient technique of orthogonal collocation on finite elements with cubic Hermite as basis. Comput. Chem. Eng. 58, 203–210 (2013)
Ganaie, I. A., Kukreja, V. K.: Numerical solution of Burgers’ equation by cubic Hermite collocation method. Appl. Math. Comput. 237, 571–581 (2014)
Villadsen, J., Stewart, W.: Solution of boundary-value problems by orthogonal collocation. Chem. Eng. Sci. 22, 1483–1501 (1967)
Arora, S., Dhaliwal, S. S., Kukreja, V. K.: Application of orthogonal collocation on finite elements for solving non-linear boundary value problems. Appl. Math. Comput. 180, 516–523 (2006)
Carey, G., Finlayson, B. A.: Orthogonal collocation on finite elements. Chem. Eng. Sci. 30, 587–596 (1975)
Andrews, L. C.: Special functions for engineers and applied mathematicians. Macmillan Publishing Company, New York (1984)
Bellman, R. E., Kalaba, R.E.: Quasilinearization and nonlinear boundary-value problems. American Elsevier Publishing, New York (1965)
Arora, S., Kaur, I.: Applications of quintic hermite collocation with time discretization to singularly perturbed problems. Appl. Math. Comput. 316, 409–421 (2018)
Miller, J., O’riordan, R., Shishkin, G.: Fitted numerical methods for singular perturbation problems. World Scientific, Singapore (1996)
Kadalbajoo, M. K., Awasthi, A.: Crank-nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection diffusion equations. Int. J. Comput. Math. 85, 771–790 (2008)
Ucar, Y., Yagmurlu, N. M., Celikkaya, I.: Operator splitting for numerical solution of the modified Burgers’ equation using finite element method. Numer. Meth. Part Diff. Eq. 35, 478–492 (2019)
Bratsos, A. G., Khaliq, A. Q. M.: An exponential time differencing method of lines for the Burgers’ and the modified Burgers’ equations. Numer. Meth. Part Diff. Eq. 34, 2024–2039 (2018)
Ramadan, M. A., El-Danaf, T. S., Alaal, F. E. I.: A numerical solution of the Burgers’ equation using septic B-splines. Chaos Solitons Fractals 26, 1249–1258 (2005)
Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. Numer. Math. 9, 394–430 (1967)
Birkhoff, G., Priver, A.: Hermite interpolation errors for derivatives. J. Math. Phys. 46, 440–447 (1967)
Mittal, R. C., Jain, R. K.: Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method. Appl. Math. Comput. 218, 7839–7855 (2012)
Xie, S. S., Heo, S., Kim, S., Woo, G., Yi, S.: Numerical solution of one-dimensional Burgers’ equation using reproducing kernel function. J. Comput. Appl. Math. 214, 417–434 (2008)