Error bounds for septic Hermite interpolation and its implementation to study modified Burgers’ equation

Archna Kumari1, V. K. Kukreja1
1Department of Mathematics, SLIET, 148106, Longowal, Punjab, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Nariboli, G. A., Lin, W. C.: A new type of Burgers’ equation. J. Appl. Math. Mech. 53, 505–510 (1973)

Gorschkov, K. A., Ostrovsky, L. A., Pelinovsky, E. N.: Some problems of asymptotic theory of nonlinear waves. Proc. IEEE 62, 1511–1517 (1974)

Harris, S. E.: Sonic shocks governed by the modified Burgers’ equation. Eur. J. Appl. Math. 7, 201–222 (1996)

Sachdev, P. L., Rao, C. S.: N-wave solution of modified Burgers’ equation. Appl. Math. Lett. 13, 1–6 (2000)

Sachdev, P. L., Rao, C. S., Enflo, B. O.: Large-time asymptotics for periodic solutions of the modified Burgers’ equation. Stud. Appl. Math. 114, 307–323 (2005)

Inan, I. E., Ugurlu, Y.: Exp-function method for the exact solutions of fifth order KdV equation and modified Burgers’ equation. Appl. Math. Comput. 217, 1294–1299 (2010)

Roshan, T., Bhamra, K. S.: Numerical solutions of the modified Burgers’ equation by Petrov–Galerkin method. Appl. Math. Comput. 218 3673–3679 (2011)

Ramadan, M. A., El-Danaf, T. S.: Numerical treatment for the modified Burgers’ equation. Math. Comput. Simul., 70 90–98 (2005)

Irk, D.: Sextic B-spline collocation method for the modified Burgers’ equation. Kybernetes 38, 1599–1620 (2009)

Bratsos, A. G.: A fourth-order numerical scheme for solving the modified Burgers’ equation. Comput. Math. Appl. 60, 1393–1400 (2010)

Kutluay, S., Ucar, Y., Yagmurlu, N. M.: Numerical solutions of the modified Burgers’ equation by a cubic B-spline collocation method. B Malays Math. Sci. So. 39, 1603–1614 (2016)

Arora, S., Kaur, I.: An efficient scheme for numerical solution of Burgers’ equation using quintic Hermite interpolating polynomials. Arab. J. Math. 5, 23–34 (2016)

Arora, S., Kaur, I., Tilahun, W.: An exploration of quintic Hermite splines to solve Burgers’ equation. Arab. J. Math. 9, 19–36 (2020)

Karakoc, S. B. G., Bashan, A., Geyikli, T.: Two different methods for numerical solution of the modified Burgers’ equation. Sci. World J. 5, 1–13 (2014)

Bashan, A., Karakoc, S. B. G., Geyikli, T.: B-spline differential quadrature method for the modified Burgers’ equation. Cankaya Uni. J. Sci. Eng. 12, 001–013 (2015)

Nagaveni, K.: A new numerical approach for the solution of the modified Burgers’ equation using Haar wavelet collocation method. Glob. J. Pure Appl. Math. 15, 829–839 (2019)

Nair, L. C., Awasthi, A.: Quintic trigonometric spline based numerical scheme for nonlinear modified Burgers’ equation. Numer. Meth. Part D E. 35, 1269–1289 (2019)

Lakshmi, C., Awasthi, A.: Robust Numerical scheme for nonlinear modified Burgers equation. I J. Comput. Math. 95, 1910–1926 (2018)

Mittal, A. K., Ganaie, I. A., Kukreja, V. K., Parumasur, N., Singh, P.: Solution of diffusion-dispersion models using a computationally effcient technique of orthogonal collocation on finite elements with cubic Hermite as basis. Comput. Chem. Eng. 58, 203–210 (2013)

Ganaie, I. A., Kukreja, V. K.: Numerical solution of Burgers’ equation by cubic Hermite collocation method. Appl. Math. Comput. 237, 571–581 (2014)

Villadsen, J., Stewart, W.: Solution of boundary-value problems by orthogonal collocation. Chem. Eng. Sci. 22, 1483–1501 (1967)

Arora, S., Dhaliwal, S. S., Kukreja, V. K.: Application of orthogonal collocation on finite elements for solving non-linear boundary value problems. Appl. Math. Comput. 180, 516–523 (2006)

Carey, G., Finlayson, B. A.: Orthogonal collocation on finite elements. Chem. Eng. Sci. 30, 587–596 (1975)

Andrews, L. C.: Special functions for engineers and applied mathematicians. Macmillan Publishing Company, New York (1984)

Bellman, R. E., Kalaba, R.E.: Quasilinearization and nonlinear boundary-value problems. American Elsevier Publishing, New York (1965)

Arora, S., Kaur, I.: Applications of quintic hermite collocation with time discretization to singularly perturbed problems. Appl. Math. Comput. 316, 409–421 (2018)

Miller, J., O’riordan, R., Shishkin, G.: Fitted numerical methods for singular perturbation problems. World Scientific, Singapore (1996)

Kadalbajoo, M. K., Awasthi, A.: Crank-nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection diffusion equations. Int. J. Comput. Math. 85, 771–790 (2008)

Ucar, Y., Yagmurlu, N. M., Celikkaya, I.: Operator splitting for numerical solution of the modified Burgers’ equation using finite element method. Numer. Meth. Part Diff. Eq. 35, 478–492 (2019)

Bratsos, A. G., Khaliq, A. Q. M.: An exponential time differencing method of lines for the Burgers’ and the modified Burgers’ equations. Numer. Meth. Part Diff. Eq. 34, 2024–2039 (2018)

Saka, B., Dag, I.: A numerical study of the Burgers’ equation. J. Franklin I(345), 328–348 (2008)

Ramadan, M. A., El-Danaf, T. S., Alaal, F. E. I.: A numerical solution of the Burgers’ equation using septic B-splines. Chaos Solitons Fractals 26, 1249–1258 (2005)

Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. Numer. Math. 9, 394–430 (1967)

Birkhoff, G., Priver, A.: Hermite interpolation errors for derivatives. J. Math. Phys. 46, 440–447 (1967)

Mittal, R. C., Jain, R. K.: Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method. Appl. Math. Comput. 218, 7839–7855 (2012)

Xie, S. S., Heo, S., Kim, S., Woo, G., Yi, S.: Numerical solution of one-dimensional Burgers’ equation using reproducing kernel function. J. Comput. Appl. Math. 214, 417–434 (2008)

Aswin, V., Awasthi, A.: Iterative differential quadrature algorithms for modified Burgers’ equation. Eng. Comput. 35, 235–250 (2018)