Error analysis for a Galerkin-spectral method with coordinate transformation for solving singularly perturbed problems

Applied Numerical Mathematics - Tập 38 - Trang 315-345 - 2001
Wenbin Liu1, Tao Tang2
1Institute of Mathematics and Statistics, The University of Kent, Canterbury, CT2 7NF, England, UK
2Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong

Tài liệu tham khảo

Asher, 1988 Bernardi, 1989, Properties of some weighted Sobolev spaces and applications to spectral approximations, SIAM J. Numer. Anal., 26, 769, 10.1137/0726045 Boyd, 1989 Canuto, 1988, Spectral methods and a maximum principle, Math. Comp., 51, 615, 10.1090/S0025-5718-1988-0930226-2 Canuto, 1988 Cash, 1991, A deferred correction method for nonlinear two-point boundary value problems, SIAM. J. Sci. Comput., 12, 971, 10.1137/0912052 Eisen, 1992, A new method of stabilization for singular perturbation problems with spectral methods, SIAM J. Numer. Anal., 29, 107, 10.1137/0729007 Greengard, 1991, Spectral integration and two-point boundary value problem, SIAM J. Numer. Anal., 28, 1071, 10.1137/0728057 Huang, 1993, A new pseudospectral method with upwind features, IMA J. Numer. Anal., 13, 413, 10.1093/imanum/13.3.413 Kalinay de Rivas, 1972, On the use of nonlinear grids in finite-difference equations, J. Comput. Phys., 10, 202, 10.1016/0021-9991(72)90060-5 Kellogg, 1978, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp., 32, 1025, 10.1090/S0025-5718-1978-0483484-9 Kreiss, 1986, Numerical methods for stiff two-point boundary value problems, SIAM J. Numer. Anal., 23, 325, 10.1137/0723023 Lee, 1997, A fast adaptive numerical method for stiff two-point boundary value problems, SIAM J. Sci. Comput., 18, 403, 10.1137/S1064827594272797 Lentini, 1977, An adaptive finite difference solver for nonlinear two-point boundary problems with mild boundary layers, SIAM J. Numer. Anal., 14, 91, 10.1137/0714006 Liu, 1996, A new efficient spectral Galerkin methods for singular perturbation problems, J. Sci. Comput., 11, 130, 10.1007/BF02088955 Liu, 1993, A new boundary layer resolving spectral method Y.Y. Liu, The pseudospectral Chebyshev method for two-point boundary value problems, M.Sc. thesis, Department of Mathematics and Statistics, Simon Fraser University, Burnaby, B.C., Canada, 1992 Mattheij, 1984, An efficient algorithm for solving general linear two point BVP, SIAM J. Sci. Statist. Comput., 5, 745, 10.1137/0905053 Miller, 1996 Mulholland, 1998, Pseudospectral solutions of near-singular problems using numerical coordinate transformations based on adaptivity, SIAM J. Sci. Comput., 19, 1261, 10.1137/S1064827595291984 Orszag, 1974, Numerical simulation of viscous incompressible flows, Ann. Rev. Fluid Mech., 6, 281, 10.1146/annurev.fl.06.010174.001433 Roos, 1996 Schatz, 1983, On the finite element method for singularly perturbed reaction–diffusion problems in two and one dimensions, Math. Comp., 40, 47, 10.1090/S0025-5718-1983-0679434-4 Schwab, 1996, The p and hp versions of the finite element method for problems with boundary layers, Math. Comp., 65, 1403, 10.1090/S0025-5718-96-00781-8 Shen, 1994, Efficient spectral-Galerkin method I: Direct solvers for the Helmholtz equation and the biharmonic equation using Legendre polynomials, SIAM J. Sci. Comput., 15, 1489, 10.1137/0915089 Shen, 1995, Efficient spectral-Galerkin method II: Direct solvers of second- and fourth-order equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16, 74, 10.1137/0916006 G.I. Shishkin, Grid approximation of singularly perturbed elliptic and parabolic equations, Second Doctoral Thesis, Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow, 1990 Stynes, 1986, A finite element method for a singularly perturbed boundary value problem, Numer. Math., 50, 1, 10.1007/BF01389664 Tang, 1996, Boundary layer resolving pseudospectral method for singular perturbation problems, SIAM J. Sci. Comput., 17, 430, 10.1137/S1064827592234120