Error Negativity Does Not Reflect Conflict: A Reappraisal of Conflict Monitoring and Anterior Cingulate Cortex Activity

Journal of Cognitive Neuroscience - Tập 20 Số 9 - Trang 1637-1655 - 2008
Borı́s Burle1, Clémence Roger2, Sonia Allain2, Franck Vidal2, Thierry Hasbroucq2
1Aix Marseille Université, CNRS, Marseille, France
2Laboratoire de Neurosciences Cognitives [Marseille]

Tóm tắt

Abstract Our ability to detect and correct errors is essential for our adaptive behavior. The conflict-loop theory states that the anterior cingulate cortex (ACC) plays a key role in detecting the need to increase control through conflict monitoring. Such monitoring is assumed to manifest itself in an electroencephalographic (EEG) component, the “error negativity” (N e or “error-related negativity” [ERN]). We have directly tested the hypothesis that the ACC monitors conflict through simulation and experimental studies. Both the simulated and EEG traces were sorted, on a trial-by-trial basis, as a function of the degree of conflict, measured as the temporal overlap between incorrect and correct response activations. The simulations clearly show that conflict increases as temporal overlap between response activation increases, whereas the experimental results demonstrate that the amplitude of the N e decreases as temporal overlap increases, suggesting that the ACC does not monitor conflict. At a functional level, the results show that the duration of the N e depends on the time needed to correct (partial) errors, revealing an “on-line” modulation of control on a very short time scale.

Từ khóa


Tài liệu tham khảo

10.1016/S1388-2457(01)00494-1

10.1162/089892900562110

10.1037/0033-295X.108.3.624

10.1016/j.tics.2004.10.003

10.1038/46035

10.1126/science.1105783

10.1037/0096-1523.31.4.831

10.1007/s00426-002-0105-6

10.1016/j.bandc.2004.06.004

Callaway E., 1984, Psychophysiology, 21, 571

10.1016/j.brainres.2006.04.004

10.1515/REVNEURO.1999.10.1.49

10.1126/science.280.5364.747

10.1038/74783

10.2307/1423029

10.1037/0096-1523.11.5.529

10.1523/JNEUROSCI.3286-05.2005

10.1111/j.1467-9280.1994.tb00630.x

10.1016/j.jneumeth.2003.10.009

10.1162/jocn.2007.19.2.275

10.1016/j.neuroimage.2004.09.007

10.3758/BF03203267

10.1016/0013-4694(91)90062-9

10.1111/j.1469-8986.2005.00265.x

10.1523/JNEUROSCI.21-23-09430.2001

10.1111/j.1467-9280.1993.tb00586.x

10.1016/0013-4694(83)90135-9

10.1037/0096-1523.14.3.331

10.1017/S0048577299001602

10.1016/j.cogbrainres.2004.02.013

10.1037/0033-295X.109.4.679

10.1037/0096-3445.134.2.163

10.1073/pnas.79.8.2554

10.1002/hbm.1050

10.1126/science.1089910

10.1016/0301-0511(88)90013-0

10.1152/jn.00305.2004

10.1093/cercor/bhl068

10.1109/TBME.1987.326089

10.1016/0013-4694(89)90180-6

10.1162/0898929053279513

10.1523/JNEUROSCI.22-22-09990.2002

10.1007/BF00419890

10.1016/0001-6918(90)90005-Z

10.1155/S1110865701000191

10.1016/j.neulet.2004.02.028

10.1016/S1388-2457(03)00253-0

10.1007/s002210000661

10.1017/S0048577298960917

10.1111/j.1469-8986.1993.tb02062.x

10.1162/08989290260045837

10.1111/1469-8986.00080

10.1016/S0301-0511(99)00032-0

10.1162/089892904322755593

10.1037/0033-295X.111.4.931