Ergodic Properties of a Model for Turbulent Dispersion of Inertial Particles
Tóm tắt
We study a simple stochastic differential equation that models the dispersion of close heavy particles moving in a turbulent flow. In one and two dimensions, the model is closely related to the one-dimensional stationary Schrödinger equation in a random δ-correlated potential. The ergodic properties of the dispersion process are investigated by proving that its generator is hypoelliptic and using control theory.
Tài liệu tham khảo
Bec J.: Multifractal concentrations of inertial particles in smooth random flows. J. Fluid Mech. 528, 255–277 (2005)
Bec J., Cencini M., Hillerbrand R.: Heavy particles in incompressible flows: the large Stokes number asymptotics. Physica D 226, 11–22 (2007)
Bec J., Cencini M., Hillerbrand R.: Clustering of heavy particles in random self-similar flow. Phys. Rev. E 75, 025301 (2007)
Bec J., Cencini M., Hillerbrand R., Turitsyn K.: Stochastic suspensions of heavy particles. Physica D 237, 2037–2050 (2008)
Duncan K., Mehlig B., Ostlund S., Wilkinson M.: Clustering in mixing flows. Phys. Rev. Lett. 95, 240602 (2005)
Elperin T., Kleeorin N., Rogachevskii I.: Self-Excitation of fluctuations of inertial particle concentration in turbulent fluid flow. Phys. Rev. Lett. 77, 5373–5376 (1996)
Falkovich G., Fouxon A., Stepanov M.G.: Acceleration of rain initiation by cloud turbulence. Nature 419, 151–154 (2002)
Falkovich G., Gawȩdzki K., Vergassola M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)
Fouxon I., Horvai P.: Separation of heavy particles in turbulence. Phys. Rev. Lett. 100, 040601 (2008)
Fouxon I., Horvai P.: Fluctuation relation and pairing rule for Lyapunov exponents of inertial particles in turbulence. J. Stat. Mech.: Theor. & Experim. 08, (2007)
Friz, P.K.: An Introduction to Malliavin Calculus, lecture notes, http://www.math.nyu.edu/phd-students/frizpete/malliavin/mall.pdf , 2002
Gawȩdzki, K.: Soluble models of turbulent transport. In: Non-Equilibrium Statistical Mechanics and Turbulence, eds. S. Nazarenko, O. Zaboronski, Cambridge: Cambridge University Press 2008, pp. 44–107
Gradstein, I.S., Rhyzik, I.M.: Table of Integrals, Series, and Products, Vth edition. New York: Academic Press 1994
Halperin B.I.: Green’s functions for a particle in a one-dimensional random potential. Phys. Rev. 139, A104–A117 (1965)
Has’minskii, R.Z.: Stochastic Stability of Differential Equations. alphen aanden Rija, Netherlands: Sijthoff and Noordhoff, 1980
Hörmander, L.: The Analysis of Linear Partial Differential Operators. Vol. III, Berlin: Springer, 1985
Horvai, P.: Lyapunov exponent for inertial particles in the 2D Kraichnan model as a problem of Anderson localization with complex valued potential, http://arxiv.org/abs/nlin/0511023v1 [nlin.co], 2005
Kraichnan R.H.: Small scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945–953 (1968)
Le Jan Y., Raimond O.: Integration of Brownian vector fields. Ann. Probab. 30, 826–873 (2002)
Le Jan Y., Raimond O.: Flows, coalescence and noise. Ann. Probab. 32, 1247–1315 (2004)
Lifshitz I.M., Gredeskul S., Pastur L.: Introduction to the Theory of Disordered Systems. Wiley, New York (1988)
Mattingly, J.C., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl. 101, 185–232 (2002). doi:10.1016/S0304-4149(02)00150-3 http://dx.doi.org/10.1016/S0304-4149(02)00150-3
Maxey M.R., Riley J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889 (1983)
Mehlig B., Wilkinson M.: Coagulation by random velocity fields as a Kramers problem. Phys. Rev. Lett 92, 250602 (2004)
Mehlig B., Wilkinson M., Duncan K., Weber T., Ljunggren M.: On the aggregation of inertial particles in random flows. Phys. Rev. E 72, 051104 (2005)
Meyn S.P., Tweedie R.L.: Markov Chains and Stochastic Stability Communication and Control Engineering Series. Springer-Verlag, London (1993)
Meyn S.P., Tweedie R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Prob. 25, 518–548 (1993)
Norriss, J.: Simplified Malliavin calculus. In: Séminaire de probabilité XX, Lectures Note in Math. 1204, Berlin: Springer, 1986, pp. 101–130
Nualart, D.: Malliavin Calculus and Related Topics, 2nd edition, Berlin-Heidelberg: Springer, 2006
Piterbarg L.: The top Lyapunov exponent for a stochastic flow modeling the upper ocean turbulence. SIAM J. Appl. Math. 62, 777–800 (2001)
Rey-Bellet, L.: Ergodic properties of Markov processes. In: Open Quantum systems II. The Markovian approach, Lecture notes in Mathematics 1881, Berlin: Springer, 2006, pp. 1–78
Scheutzow M.: Stabilization and destabilization by noise in the plane. Stoch. Anal. Appl. 11, 97–113 (1993)
Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proc. 6-th Berkeley Symp. Math. Stat. Prob., Vol. III, Berkeley: Univ. California Press, 1972, pp. 361368
Wilkinson M., Mehlig B.: The path-coalescence transition and its applications. Phys. Rev. E 68, 040101 (2003)
Wilkinson M., Mehlig B.: Caustics in turbulent aerosols. Europhys. Lett. 71, 186–192 (2005)