Equivalent projectors for virtual element methods

Computers & Mathematics with Applications - Tập 66 Số 3 - Trang 376-391 - 2013
Bashir Ahmad1, Jinde Cao1, Franco Brezzi1,2,3, L. D. Marini4,2, A. Russo5,2
1Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2IMATI-CNR, Via Ferrata 1, 27100, Pavia, Italy
3IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
4Dipartimento di Matematica, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy
5Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via Cozzi 53, 20153 Milano, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beirão da Veiga, 2013, The basic principles of virtual elements methods, Math. Models Methods Appl. Sci., 23, 199, 10.1142/S0218202512500492

Beirão da Veiga, 2013, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 794, 10.1137/120874746

Brezzi, 2013, Virtual elements for plate bending problems, Comput. Methods Appl. Mech. Engrg., 253, 155, 10.1016/j.cma.2012.09.012

Shashkov, 1996, Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys., 129, 383, 10.1006/jcph.1996.0257

Hyman, 1999, The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. Numer. Anal., 36, 788, 10.1137/S0036142996314044

Campbell, 2001, A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comput. Phys., 172, 739, 10.1006/jcph.2001.6856

Hyman, 2001, Mimetic discretisations of Maxwell’s equations and the equations of magnetic diffusion, Prog. Electromagn. Res., 32, 89, 10.2528/PIER00080104

Kuznetsov, 2003, New mixed finite element method on polygonal and polyhedral meshes, Russian J. Numer. Anal. Math. Modelling, 18, 261, 10.1515/156939803322380846

Brezzi, 2005, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 1872, 10.1137/040613950

Brezzi, 2005, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 15, 1533, 10.1142/S0218202505000832

Bochev, 2006, Principle of mimetic discretizations of differential operators

Brezzi, 2007, A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 196, 3682, 10.1016/j.cma.2006.10.028

Trapp, 2008, Inner products in covolume and mimetic methods, M2AN Math. Model. Numer. Anal., 42, 941, 10.1051/m2an:2008030

Cangiani, 2008, Flux reconstruction and pressure post-processing in mimetic finite difference methods, Comput. Methods Appl. Mech. Engrg., 197, 933, 10.1016/j.cma.2007.09.019

Aarnes, 2008, Multiscale mixed/mimetic methods on corner-point grids, Comput. Geosci., 12, 297, 10.1007/s10596-007-9072-8

Beirão da Veiga, 2008, A residual based error estimator for the mimetic finite difference method, Numer. Math., 108, 387, 10.1007/s00211-007-0126-6

Cangiani, 2009, Convergence analysis of the mimetic finite difference method for elliptic problems, SIAM J. Numer. Anal., 47, 2612, 10.1137/080717560

Brezzi, 2010, Innovative mimetic discretizations for electromagnetic problems, J. Comput. Appl. Math., 234, 1980, 10.1016/j.cam.2009.08.049

Droniou, 2010, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci., 20, 265, 10.1142/S0218202510004222

Brezzi, 2009, Mimetic finite differences for elliptic problems, M2AN Math. Model. Numer. Anal., 43, 277, 10.1051/m2an:2008046

Beirão da Veiga, 2010, A mimetic finite difference method for linear elasticity, M2AN Math. Model. Numer. Anal., 44, 231, 10.1051/m2an/2010001

Beirão da Veiga, 2008, A higher-order formulation of the mimetic finite difference method, SIAM, J. Sci. Comput., 31, 732, 10.1137/080717894

Gyrya, 2008, High-order mimetic finite difference method for diffusion problems on polygonal meshes, J. Comput. Phys., 227, 8841, 10.1016/j.jcp.2008.06.028

Beirão da Veiga, 2009, Convergence analysis of the high-order mimetic finite difference method, Numer. Math., 113, 325, 10.1007/s00211-009-0234-6

Beirão da Veiga, 2011, Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., 49, 1737, 10.1137/100807764

Wachspress, 1975

Tabarraei, 2004, Conforming polygonal finite elements, Internat. J. Numer. Methods Engrg., 61, 2045, 10.1002/nme.1141

Tabarraei, 2008, Extended finite element method on polygonal and quadtree meshes, Comput. Methods Appl. Mech. Engrg., 197, 425, 10.1016/j.cma.2007.08.013

Fries, 2010, The extended/generalized finite element method: an overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 253, 10.1002/nme.2914

Ciarlet, 1978

Brenner, 2008, vol. 15

Felippa, 2006, Supernatural QUAD4: a template formulation, Comput. Methods Appl. Mech. Engrg., 195, 5316, 10.1016/j.cma.2005.12.007