Equilibrium-kinetic model of water-rock interaction

Geochemistry International - Tập 50 Số 1 - Trang 1-7 - 2012
М. В. Мироненко1, M. Yu. Zolotov2
1Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia
2School of Earth and Space Exploration, Arizona State University, Temple, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. L. Barton, P. M. Benthke, and P. Toulmin, “Equilibrium in Ore Deposits,” Min. Soc. Am. Spec. Pap. 1, 171–185 (1963).

H. C. Helgeson, “Evaluation of Irreversible Reactions in Geochemical Processes Involving Minerals and Aqueous Solutions. I. Thermodynamic Relations,” Geochim. Cosmochim. Acta 32, 569–592 (1968).

H. C. Helgeson, T. H. Brown, A. Nigrini, and T. A. Jones, “Calculation of Mass Transfer in Geochemical Processes Involving Aqueous Solutions,” Geochim. Cosmochim. Acta 34(5), 569–592 (1970).

S. L. Brantley, “Reaction Kinetics of Primary Rock-Forming Minerals under Ambient Conditions,” Treatise on Geochemistry 5, 73–118 (2004).

Kinetics of Water-Rock Interaction, Ed. by S. L. Brantley, J. D. Kubicki, and A. F. White (Springer, New York, 2008).

P. Aagaard and H. C. Helgeson, “Thermodynamic and Kinetic Constrains on Reaction among Minerals and Aqueous Solutions. I. Theoretical Considerations,” Am. J. Sci. 282, 237–285 (1982).

A. C. Lasaga, “Transition State Theory,” in Kinetics of Geochemical Processes, Ed. by A.C. Lasaga and R.J. Kirkpatrick (Miner. Soc. Am., 1981), no. 8, pp. 135–169.

J. Cama, V. Metz, and J. Ganor, “The Effect of pH and Temperature on Kaolinite Dissolution Rate under Acidic Conditions,” Geochim. Cosmochim. Acta 66, 3913–3926 (2002).

V. A. Alekseev, “Equations for the Dissolution Reaction Rates of Montmorillonite, Illite, and Chlorite,” Geochem. Int. 45, 770–780 (2007).

T. Xu and K. Pruess, “Modeling Multiphase Non-Isothermal Fluid Flow and Reactive Geochemical Transport in Variability Saturated Fractured Rocks: Methodology,” Am. J. Sci. 301, 16–33 (2001).

N. Todaka, C. Akasaka, T. Xu, and K. Pruess, “Modeling of Geochemical Interactions between Acidic and Neutral Fluids in the Onicobe Geothermal Reservoir,” in Proceedings of 28th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, 2003 (Stanford, 2003), SGP-TR-173.

T. W. Wolery and R. L. Jarek, Software User’s Manual EQ3/6, Version 8.0 (US Department of Energy, Office, of Civilian Radioactive Waste Management, Office of Repository Development, Software) Doc. Number 10813-UM-8.0-00.2003.

D. L. Parkhurst and C. A. J. Appelo, “User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch Reaction, One-Dimensional Transport and Inverse Geochemical Calculations,” U.S. Geol. Surv. Water Res. Inv. Rept., no. 99-4259 (1999).

C. I. Steefel, D. DePaolo, and P. C. Lichtner, “Reactive Transport Modeling: An Essential Tool and a New Research Approach for the Earth Sciences,” Earth Planet. Sci. Lett. 240, 539–558 (2005).

K. J. Laidler, Chemical Kinetics (Harper and Row, New York, 1987).

A. Meunier, Clays (Springer, Berlin, 2005).

M. A. Nugent, S. L. Brantley, C. G. Pantano, and P. A. Maurice, “The Influence of Natural Mineral Coatings on Feldspar Weathering,” Nature 395, 588–591 (1998).

M. E. Hodson, “The Influence of Fe-Rich Coatings on the Dissolution of Anorthite at pH 2.6,” Geochim. Cosmochim. Acta 67, 3355–3363 (2003).

M. V. Mironenko, N. N. Akinfiev, and T. Yu. Melikhova, “GEOSHEQ—Complex for Thermodynamic Modeling of Geochemical Systems,” Vestn. OGGGGN Ross. Akad. Nauk 5(15), (2000). URL: http:www.scgis.Ru/Russian/cp1251/H-dggms/5-2000/Term ,10.

J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, “SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 bars and 0 to 1000°C,” Comp. Geosci. 18, 899–947 (1992).

C. de Capitani and T. H. Brown, “The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions,” Geochim. Cosmochim. Acta 51, 2639–2152 (1987).

M. V. Mironenko, T. Yu. Melikhova, M. Yu. Zolotov, and N. N. Akinfiev, “GEOSHEQ-M—A Complex for Thermodynamic and Kinetic Modeling of Geochemical Processes in the Water-Rock-Gas System. Version 2008,” Vestn. ONZ RAN. 2008. URL: http:/www.scsgis.Ru/Russian/cp1251/H-dgggms/1-2008/Informbul-1-2008/Mineral , 22.

M. Yu. Zolotov and M. V. Mironenko, “Aqueous Alteration of CM2 Chondrites Evaluated with Kinetic Models,” Meteor. Planet. Sci. 43Suppl., A177 (2008).

P. V. Brady and J. V. Walther, “Kinetics of Quartz Dissolution at Low Temperatures,” Chem. Geol. 82(2), 253–264 (1990).

P. V. Brady and J. V. Walther, “Controls on Silicate Dissolution Rates in Neutral and Basic PH Solutions at 25°C,” Geochim. Cosmochim. Acta 53, 2823–2830 (1989).

A. E. Blum and L. L. Stilings, “Feldspar Dissolution Kinetics,” in Chemical Weathering Rates of Silicate Minerals, Ed. by A.F. White and S.L. Brantley, Rev. Mineral. 31, 291–351 (1995).

V. A. Alekseev, Kinetics of the Interaction of Rock-Forming Minerals with Aqueous Solution, in Geological Evolution and Self Organization of the Water-Rock System,” Ed. by S.L. Shvartsev (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2005), Vol. 1, pp. 71–107 [in Russian].

A. F. White, M. L. Peterson, and Jr. M. F. Hochella, “Electrochemistry and Dissolution Kinetics of Magnetite and Ilmenite,” Geochim. Cosmochim. Acta 58, 1859–1875 (1994).

A. F. White and S. L. Brantley, “The Effect of Time on the Weathering of Silicate Minerals: Why Do Weathering Rates Differ in the Laboratory and Field?,” Chem. Geol. 202, 479–506 (2003).

A. F. White, “Natural Weathering Rates of Silicate Minerals,” in Treatise on Geochemistry, Ed. by J. I. Drever, H. D. Holland, and K. K. Turekian (Elsevier-Pergamon, Oxford, 2004), pp. 133–168.