Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Triclosan onto Multi‐Walled Carbon Nanotubes

Wiley - Tập 41 Số 6 - Trang 539-547 - 2013
Shiqing Zhou1, Yisheng Shao2,1, Naiyun Gao1, Jing Deng1, Chaoqun Tan1
1State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, P. R. China
2China Academy of Urban Planning and Design, Beijing, P. R. China

Tóm tắt

AbstractThe increased accumulation of toxic pharmaceuticals and personal care products in the environment is a concern of worldwide relevance. Efficient technologies are needed to mitigate the level of such chemicals in natural waters. The suitability of multi‐walled carbon nanotubes (MWCNTs) to remove aqueous triclosan (a widely used anti‐microbial agent) was investigated in the present study. Tested operational parameters included the pH (3.0–11.0) value and the ionic strength (10−3, 10−2, and 10−1 M). Kinetic and thermodynamic studies were conducted at different initial concentrations (4, 8, and 10 mg/L) and temperatures (288, 298, and 308 K). Results showed higher triclosan adsorption at pH 3.0 (157.7 mg/g) than at pH 11.0 (103.9 mg/g). With an increase of ionic strength from 10−3 to 10−2 M, the adsorption capacity increased from 136.1 to 153.1 mg/g and from 80.8 to 105.8 mg/g at pH 3.0 and 10.0, respectively, while further increase of ionic strength to 10−1 M slightly reduced the triclosan adsorption to 149.9 and 94.7 mg/g due to the aggregation of MWCNTs. The Polanyi–Manes model (PMM) provided a best fitting of adsorption isotherms to the experimental data, and the kinetic process was well described by the pseudo second‐order kinetic model. The calculated thermodynamic parameters (ΔH0 = −88.08 kJ/mol, ΔS0 = −173.38 J/mol K) suggested that the adsorption of triclosan is spontaneous and exothermic in nature. The findings of the present work have significant implications for the removal of triclosan from aqueous solution with MWCNTs.

Từ khóa


Tài liệu tham khảo

10.1016/S0043-1354(03)00335-X

10.1016/S0043-1354(03)00164-7

10.1897/04-144R.1

10.1016/j.chemosphere.2006.04.066

10.1002/etc.5620210703

10.1016/j.aquatox.2003.12.005

10.1016/j.aquatox.2008.08.003

10.1016/j.scitotenv.2006.08.007

10.1021/ac060666x

10.1289/ehp.10768

10.1093/toxsci/kfn225

10.1016/j.envint.2009.02.004

10.1016/j.etap.2007.04.008

10.1093/toxsci/kfq180

10.1016/S1010-6030(03)00103-5

10.1016/j.chemosphere.2006.07.010

10.1007/s00216-005-0116-4

10.1021/es048943

10.1016/j.envpol.2007.02.013

10.1016/j.chemosphere.2006.07.004

10.1016/j.jhazmat.2010.03.056

10.1021/jf900376c

10.1504/IJETM.2009.021576

10.1007/s11368-010-0223-5

10.1002/clen.201000198

10.1080/10934520701513381

10.1002/jctb.1708

10.1016/j.jhazmat.2006.05.076

10.1021/ja003830l

10.1016/j.watres.2004.12.033

10.1021/es052208w

10.1016/j.jallcom.2010.03.217

10.1016/j.apsusc.2010.05.059

10.1002/clen.200900158

10.1016/j.jcis.2008.01.047

10.1016/j.cej.2010.08.045

10.1016/j.jhazmat.2011.06.020

10.1021/es801463v

10.1016/j.jhazmat.2010.01.110

10.1021/es801777n

10.1021/jp010568

10.1016/j.watres.2009.12.017

10.1021/es801251c

10.1021/es0481169

10.1016/j.colsurfa.2007.06.045

10.1016/S1387-1811(00)00158-X

10.1002/clen.201000335

10.1016/j.desal.2010.10.047

10.1002/clen.200700139