Equidistribution of saddle periodic points for Hénon-type automorphisms of $$\mathbb {C}^k$$

Mathematische Annalen - Tập 366 - Trang 1207-1251 - 2016
Tien-Cuong Dinh1, Nessim Sibony2
1Department of Mathematics, National University of Singapore, Singapore, Singapore
2Université Paris-Sud, Orsay, France

Tóm tắt

In this paper, we prove the equidistribution of saddle periodic points for Hénon-type automorphisms of $$\mathbb {C}^k$$ with respect to its equilibrium measure. A general strategy to obtain equidistribution properties in any dimension is presented. It is based on our recent theory of densities for positive closed currents. Several fine properties of dynamical currents are also proved.

Tài liệu tham khảo

Bedford, E., Lyubich, M., Smillie, J.: Polynomial diffeomorphisms of \({\mathbf{C}}^2\). IV. The measure of maxi-mal entropy and laminar currents. Invent. Math. 112(1), 77–125 (1993) Bedford, E., Lyubich, M., Smillie, J.: Distribution of periodic points of polynomial diffeomorphisms of \({\mathbf{C}}^2\). Invent. Math. 114(2), 277–288 (1993) Dellacherie, C., Meyer, P.A.: Probabilité et Potentiel, vol. 1. Hermann E. (1975) Demailly, J.-P.: Complex Analytic and Differential Geometry. http://www.fourier.ujf-grenoble.fr/~demailly de Thélin, H.: Sur les exposants de Lyapounov des applications méromorphes. Invent. Math. 172(1), 89–116 (2008) de Thélin, H.: Sur les automorphismes réguliers de \({\mathbb{C}}^k\). Publ. Mat. 54(1), 243–262 (2010) Dinh, T.-C.: Suites d’applications méromorphes multivaluées et courants laminaires. J. Geom. Anal. 15(2), 207–227 (2005) Dinh, T.-C.: Decay of correlations for Hénon maps. Acta Math. 195, 253–264 (2005) Dinh, T.-C., Nguyen, V.-A., Truong, T.-T.: On the dynamical degrees of meromorphic maps preserving a fibration. Commun. Contemp. Math. 14(6), 1250042, 18 (2012) Dinh, T.-C., Sibony, N.: Regularization of currents and entropy. Ann. Sci. Ecole Norm. Sup. 37, 959–971 (2004) Dinh, T.-C., Sibony, N.: Distribution des valeurs de transformations méromorphes et applications. Comment. Math. Helv. 81(1), 221–258 (2006) Dinh, T.-C., Sibony, N.: Super-potentials of positive closed currents, intersection theory and dynamics. Acta Math. 203(1), 1–82 (2009) Dinh, T.-C., Sibony, N.: Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms. J. Algebraic Geom. 19(3), 473–529 (2010) Dinh, T.-C., Sibony, N.: Density of positive closed currents, a theory of non-generic intersections, preprint, new version 2014. arXiv:1203.5810 Dinh, T.-C., Sibony, N.: Rigidity of Julia sets for Hénon type maps. J. Mod. Dyn. 8(3–4), 499–548 (2014) Dujardin, R.: Sur l’intersection des courants laminaires. Publ. Mat. 48(1), 107–125 (2004) Dujardin, R.: Hénon-like mappings in \({\mathbb{C}}^2\). Am. J. Math. 126(2), 439–472 (2004) Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969) Fornæss, J.-E.: Dynamics in several complex variables. CBMS Regional Conference Series in Mathematics, vol. 87. American Mathematical Society, Providence, RI (1996) Fornæss, J.-E., Wu, H.: Classification of degree \(2\) polynomial automorphisms of \({\mathbf{C}}^3\). Publ. Mat. 42(1), 195–210 (1998) Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory Dyn. Syst. 9(1), 67–99 (1989) Huckleberry, A.: Subvarieties of homogeneous and almost homogeneous manifolds. In: Skoda, H., Trépreau, J-M. (eds.) Contributions to Complex Analysis and Analytic Geometry, pp. 189–232. Aspects Math. vol. E26. Vieweg, Braunschweig (1994) Lee, C.: The canonical height and the equidistribution of small points for strongly regular pairs of polynomial maps. Math. Z. 275(3–4), 1047–1072 (2013) Sibony, N.: Dynamique des applications rationnelles de \(\mathbb{P}^k\). Panoramas et Synthèses 8, 97–185 (1999) Sibony, N., Wong, P.: Some results on global analytic sets. In: Lelong, P., Skoda, H. (eds.) Séminaire Pierre Lelong-Henri Skoda (Analyse), Années 1978/79, pp. 221–237. Lecture Notes in Math. vol. 822. Springer, Berlin (1980) Skoda, H.: Prolongement des courants positifs, fermés de masse finie. Invent. Math. 66, 361–376 (1982) Sullivan, D.: Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math. 36, 225–255 (1976) Voisin, C.: Théorie de Hodge et géométrie algébrique complexe. Cours Spécialisés, vol. 10. Société Mathématique de France, Paris (2002) Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, vol. 79. Springer-Verlag, New York (1982)