Equicontinuous classes of ring Q-homeomorphisms

Vladimir Ryazanov1, Evgeny Sevost’yanov1
1Institute of Applied Mathematics and Mechanics of NASU, Donetsk, the Ukraine

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vodop’yanov S. K., “Mappings with bounded distortion and with finite distortion on Carnot groups,” Siberian Math. J., 40, No. 4, 644–677 (1999).

Vodop’yanov S. K., “Topological and geometrical properties of mappings with summable Jacobian in Sobolev classes. I,” Siberian Math. J., 41, No. 1, 19–39 (2000).

Gehring F. W. and Iwaniec T., “The limit of mappings with finite distortion,” Ann. Acad. Sci. Fenn. Ser. A I Math., 24, No. 1, 253–264 (1999).

Iwaniec T. and Martin G., Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford (2001).

Martio O., Ryazanov V., Srebro U., and Yakubov E., “Mappings with finite length distortion,” J. Anal. Math., 93, 215–236 (2004).

Manfredi J. J. and Villamor E., “Mappings with integrable dilatation in higher dimensions,” Bull. Amer. Math. Soc., 32, No. 2, 235–240 (1995).

Manfredi J. J. and Villamor E., “An extension of Reshetnyak’s theorem,” Indiana Univ. Math., 47, No. 3, 1131–1145 (1998).

Vodop’yanov S. K. and Ukhlov A. D., “The weighted Sobolev spaces and quasiconformal mappings,” Dokl. RAN, 403, No. 5, 583–588 (2005).

Martio O., Rickman S., and Väisälä J., “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A I Math., 448, 1–40 (1969).

Reshetnyak Yu. G., “Space mappings with bounded distortion,” Siberian Math. J., 8,No. 3, 466–487 (1967).

Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence, RI (1989).

Martio O. and Väisälä J., “Elliptic equations and maps of bounded length distortion,” Math. Ann., 282, No. 3, 423–443 (1988).

Martio O., Ryazanov V., Srebro U., and Yakubov E., “On Q-homeomorphisms,” Ann. Acad. Sci. Fenn. Ser. A I Math., 30, No. 1, 49–69 (2005).

Hesse J., “A p-extremal length and p-capacity equality,” Ark. Math., 13,No. 1, 131–144 (1975).

Väisälä J., Lectures on n-Dimensional Quasiconformal Mappings, Springer-Verlag, Berlin etc. (1971) (Lecture Notes in Math.; 229).

Gehring F. W., “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, No. 3, 353–393 (1962).

Ryazanov V., Srebro U., and Yakubov E., “On ring solutions of Beltrami equations,” J. Anal. Math., 96, 117–150 (2005).

Gutlyanski V., Martio O., Sugava T., and Vuorinen M., “On the degenerate Beltrami equation,” Trans. Amer. Math. Soc., 357, No. 3, 875–900 (2005).

Lehto O. and Virtanen K., Quasikonforme Abbildungen, Springer-Verlag, Berlin etc. (1965).

Saks S., Theory of the Integral [Russian translation], Izdat. Inostr. Lit., Moscow (1949).

Federer H., Geometric Measure Theory [Russian translation], Nauka, Moscow (1987).

Ransford Th., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge (1995).

Gehring F. W., Quasiconformal Mappings, Complex Analysis and Its Applications. Vol. 2, Intern. Atomic Energy Agency, Vienna (1976).

Vuorinen M., Conformal Geometry and Quasiregular Mappings, Springer-Verlag, Berlin etc. (1988) (Lecture Notes in Math.; 1319).

John F. and Nirenberg L., “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, 415–426 (1961).

Reimann H. M. and Rychener T., Funktionen Beschrankter Mittlerer Oscillation, Springer-Verlag, Berlin etc. (1975).

Ignat’ev A. and Ryazanov V., “Finite mean oscillation in mapping theory,” Ukrain. Mat. Vestnik, 2, No. 3, 395–417 (2005).

Ryazanov V., Srebro U., and Yakubov E., “The Beltrami equation and ring homeomorphisms,” Ukrain. Mat. Vestnik, 4, No. 1, 79–115 (2007).