Epsilon coherent states with polyanalytic coefficients for the harmonic oscillator

Analysis and Mathematical Physics - Tập 9 - Trang 367-383 - 2017
Zouhaïr Mouayn1
1Department of Mathematics, Faculty of Sciences and Technics (M’Ghila), Sultan Moulay Slimane University, Béni Mellal, Morocco

Tóm tắt

We construct a new class of coherent states indexed by points z of the complex plane and depending on two positive parameters m and $$ \varepsilon >0$$ by replacing the coefficients $$z^{n}/\sqrt{n!}$$ of the canonical coherent states by polyanalytic functions. These states solve the identity of the states Hilbert space of the harmonic oscillator at the limit $$\varepsilon \rightarrow 0^{+}$$ and obey a thermal stability property. Their wavefunctions are obtained in a closed form and their associated Bargmann-type transform is also discussed.

Tài liệu tham khảo

Abreu, L.D., Pereira, J.M., Romero, J.L., Torquato, S.: The Weyl-Heinsenberg ensemble: hyperuiniformity and higher Landau levels. J. Stat. Mech. Theor. Exp. 043103 (2017) Abreu, L.D.: Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions. Appl. Comp. Harmon. Anal. 29, 287–302 (2010) Abreu, L.D., Feichtinger, H.G.: Function Spaces of Polyanalytic Functions, in Harmonic and Complex Analysis and Its Application, pp. 1–38. Birkhauser, Basel (2014) Abreu, L.D., Gröchenig, K.: Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group. Appl. Anal. 91, 1981–1997 (2012) Abreu, L.D., Balazs, P., de Gosson, M., Mouayn, Z.: Discrete coherent states for higher Landau levels. Ann. Phys. 363, 337–353 (2015) Ali, S.T., Antoine, J.P., Gazeau, J.P.: Coherent States and Their Generalizations. Springer, Berlin (2000) Askour, N., Intissar, A., Mouayn, Z.: Espaces de Bargmann gén éralisés et formules explicites pour leurs noyaux reproduisants. Compt. Rend. Acad. Sci. Paris 325(Série I), 707–712 (1997) Balk, M.B.: Polyanalytic Functions. Akad. Verlag, Berlin (1991) Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform, Part I. Comm. Pure Appl. Math. 14, 187–214 (1961) Bauerschmidt, R., Paul, B., Nikula, M., Yau , H.-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. arXiv:1609.08582 (2017) Bergeron, H., Siegl, P., Youssef, A.: New SUSYQM coherent states for Pöschl -Teller potentials: a detailed mathematical analysis. J. Phys. A: Math. Theor. 45, 244028 (2012) Buchholz, H.: The Confluent Hypergeometric Function, vol. 15. Springer, Berlin (1969) Dodonov, V.V.: ’Nonclassical‘ states in quantum optics: a squeezed review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4, R1–R33 (2002) Gazeau, J.P.: Coherent States in Quantum Physics. Wiley-VCH Verlag GMBH & Co, KGaA, Weinheim (2009) Gazeau, J.P., Klauder, J.R.: Coherent states for systems with discrete and continous spectrum. J. Phys. A: Math. Gen. 32, 123–132 (1999) Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, Inc, Cambridge (2007) Haimi, A., Hedenmalm, H.: The polyanalytic Ginibre ensembles. J. Stat. Phys. 153(1), 10–47 (2013) Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2005) Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966) Mouayn, Z.: Coherent state transforms attached to generalized Bargmann spaces on the complex plane. Math. Nachr. 284, 1948–1954 (2011) Mouayn, Z.: Phase coherent states with circular Jacobi polynomials for the pseudoharmonic oscillator. J. Math. Phys. 53(1), 012103 (2012) Mouayn, Z.: Coherent states quantization for generalized Bargmann spaces with formulae for their attached Berezin transforms in terms of the Laplacian on \(\mathbb{C}^{n}\). J. Fourier Anal. Appl. 18, 609–625 (2012) Muckenhoupt, B.: Poisson integrals for Hermite and Laguerre expansions. Trans. Am. Math. Soc. 139, 231–242 (1969) Shirai, T.: Ginibre-type point processes and their asymptotic behavior. J. Math. Soc. Jpn. 67(2), 763–787 (2015) Srivastava, H., Manocha, L.: A Treatise on Generating Functions. Ellis Horwood Ltd, London (1984) Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1975) Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniform systems, and order metrics. Phys. Rev. E. 68, 041113 (2003) Vasilevski, N.L.: Poly-Fock spaces, differential operators and related topics. Oper. Theory Adv. Appl 117, 371–386 (2000)