Epoxy, polyester and vinyl ester based polymer concrete: a review

Mehrab Nodehi1
1Ingram School of Engineering, Texas State University, San Marcos, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

American Society of Civil Engineers (ASCE) (2021) A comprehensive assessment of AMERICA’S infrastructure, 2021 report card,” 2021, [Online]. https://infrastructurereportcard.org/

Fontana JJ, Bartholomew J (1980) The use of concrete polymer materials in the transportation industry. Am. Concr. Inst. committe 548 Symp. Puerto Rico, Sept. 21–26, 1980, 1980, [Online]. https://www.osti.gov/servlets/purl/6841414/

Nodehi M, Nodehi SE (2021) Ultra high performance concrete (UHPC): reactive powder concrete, slurry infiltrated fiber concrete and superabsorbent polymer concrete. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-021-00641-7

Stevens RJ (2020) Polyester polymer concrete for bridge deck overlays. Brigham Young University

Akovali G (2005) Polymers in construction

Chandra S, Ohama Y (2020) Polymers in concrete. CRC Press

Ohama Y (2011) Concrete-polymer composites—the past, present and future. Key Eng Mater 466:1–14. https://doi.org/10.4028/www.scientific.net/KEM.466.1

O’Connor DN, Saiidi M (1993) Polyester concrete for bridge deck overlays. Concr Int 15(12):36–39

Fowler DW, Whitney DW (2012) Long-term performance of polymer concrete for bridge decks

Gorninski JP, Dal Molin DC, Kazmierczak CS (2004) Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete. Cem Concr Res 34(11):2091–2095. https://doi.org/10.1016/j.cemconres.2004.03.012

Abdel-Fattah H, El-Hawary MM (1999) Flexural behavior of polymer concrete. Constr Build Mater 13(5):253–262. https://doi.org/10.1016/S0950-0618(99)00030-6

Orak S (2000) Investigation of vibration damping on polymer concrete with polyester resin. Cem Concr Res 30(2):171–174. https://doi.org/10.1016/S0008-8846(99)00225-2

Heidari-Rarani M, Aliha MRM, Shokrieh MM, Ayatollahi MR (2014) Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings—an experimental study. Constr Build Mater 64:308–315. https://doi.org/10.1016/j.conbuildmat.2014.04.031

Schneck U (2014) Concrete solutions 2014.

Lokuge W, Aravinthan T (2013) Effect of fly ash on the behaviour of polymer concrete with different types of resin. Mater Des 51:175–181. https://doi.org/10.1016/j.matdes.2013.03.078

Nodehi M, Aguayo F (2021) Ultra high performance and high strength geopolymer concrete. J Build Pathol Rehabil 6(1):34. https://doi.org/10.1007/s41024-021-00130-5

Holthausen S (2015) Sprayed polymer concrete for the rehabilitation of sewage systems, vol 1129, pp 460–467. https://doi.org/10.4028/www.scientific.net/AMR.1129.460

Haddad H, Al Kobaisi M (2012) Optimization of the polymer concrete used for manufacturing bases for precision tool machines. Compos Part B Eng 43(8):3061–3068. https://doi.org/10.1016/j.compositesb.2012.05.003

Tabatabaeian M, Khaloo A, Khaloo H (2019) An innovative high performance pervious concrete with polyester and epoxy resins. Constr Build Mater 228:116820. https://doi.org/10.1016/j.conbuildmat.2019.116820

Bărbuţă M, Harja M, Baran I (2010) Comparison of mechanical properties for polymer concrete with different types of filler. J Mater Civ Eng 22(7):696–701. https://doi.org/10.1061/(asce)mt.1943-5533.0000069

Gorninski JP, Dal Molin DC, Kazmierczak CS (2007) Strength degradation of polymer concrete in acidic environments. Cem Concr Compos 29(8):637–645. https://doi.org/10.1016/j.cemconcomp.2007.04.001

Rebeiz KS, Fowler DW, Paul DR (1991) Recycling plastics in polymer concrete systems for engineering applications. Polym Plast Technol Eng 30(8):809–825. https://doi.org/10.1080/03602559108021008

Safiuddin M (2017) Concrete damage in field conditions and protective sealer and coating systems. Coatings 7(7):15–19. https://doi.org/10.3390/coatings7070090

Victor CV, Garas Y (2003) Review of polyester polymer concrete properties, pp 5–7

Kumar R (2016) A review on epoxy and polyester based polymer concrete and exploration of polyfurfuryl alcohol as polymer concrete. J Polym 2016:1–13. https://doi.org/10.1155/2016/7249743

Nodehi M (2021) A comparative review on foam-based versus lightweight aggregate-based alkali-activated materials and geopolymer. Innov Infrastruct Solut 6(4):231. https://doi.org/10.1007/s41062-021-00595-w

Guo SY et al (2020) Mechanical and interface bonding properties of epoxy resin reinforced Portland cement repairing mortar. Constr Build Mater 264:120715. https://doi.org/10.1016/j.conbuildmat.2020.120715

Al-Zahrani MM, Maslehuddin M, Al-Dulaijan SU, Ibrahim M (2003) Mechanical properties and durability characteristics of polymer- and cement-based repair materials. Cem Concr Compos 25(4–5):527–537. https://doi.org/10.1016/S0958-9465(02)00092-6

Monteny J, De Belie N, Vincke E, Verstraete W, Taerwe L (2001) Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cem Concr Res 31(9):1359–1365. https://doi.org/10.1016/S0008-8846(01)00565-8

Saribiyik M, Piskin A, Saribiyik A (2013) The effects of waste glass powder usage on polymer concrete properties. Constr Build Mater 47:840–844. https://doi.org/10.1016/j.conbuildmat.2013.05.023

Dos Reis JML (2012) Effect of temperature on the mechanical properties of polymer mortars. Mater Res 15(4):645–649. https://doi.org/10.1590/S1516-14392012005000091

Rebeiz KS, Asce M, Serhal SP, Craft AP (2004) Properties of polymer concrete using fly ash, vol 16, no. February, pp 15–19. https://doi.org/10.1061/(ASCE)0899-1561(2004)16

Bulut HA, Şahin R (2017) A study on mechanical properties of polymer concrete containing electronic plastic waste. Compos Struct 178:50–62. https://doi.org/10.1016/j.compstruct.2017.06.058

Rebeiz KS, Fowler DW (1996) Flexural strength of reinforced polymer concrete made with recycled plastic waste. ACI Struct J 93(5):524–530. https://doi.org/10.14359/9710

Wang J, Dai Q, Guo S, Si R (2019) Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays. Constr Build Mater 203:469–480. https://doi.org/10.1016/j.conbuildmat.2019.01.085

Hassani Niaki M, Fereidoon A, Ghorbanzadeh Ahangari M (2018) Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos Struct vol 191, no February, pp 231–238. https://doi.org/10.1016/j.compstruct.2018.02.063

Mccleese WF (2000) REMR program overview and guide, no. June

Kosednar J, Mailvaganam NP (2005) Selection and use of polymer-based materials in the repair of concrete structures. J Perform Constr Facil 19(3):229–233. https://doi.org/10.1061/(asce)0887-3828(2005)19:3(229)

Czarnecki L, Ozkul H, Wang R (2013) Driving forces concrete-polymer composites. Adv Mater Res 687:68–74. https://doi.org/10.4028/www.scientific.net/AMR.687.68

Hing E (2007) Application of polymer in concrete construction, vol 16, no November 2007

Beeldens A, Van Gemert D, Schorn H, Ohama Y, Czarnecki L (2005) From microstructure to macrostructure: an integrated model of structure formation in polymer-modified concrete. Mater Struct Constr 38(280):601–607. https://doi.org/10.1617/14215

Ramesh Kumar GB, Rishab Narayanan V (2020) A review on polymer impregnated concrete using steel wire mesh. Mater Today Proc 33:338–344. https://doi.org/10.1016/j.matpr.2020.04.118

Aswini G, Kalpana (2020) Conventional concrete over polymer impregnated concrete using silica fumes. IOP Conf Ser Mater Sci Eng 923(1). https://doi.org/10.1088/1757-899X/923/1/012046

Fowler DW (1999) Polymers in concrete: a vision for the 21st century. Cem Concr Compos 21(5–6):449–452. https://doi.org/10.1016/S0958-9465(99)00032-3

Fardis MN, Khalili HH (1983) FRP-encased concrete as a structural material. Mag Concr Res 35(125):242–243. https://doi.org/10.1680/macr.1983.35.125.242

Rahman M, Mansur MA, Lee LK, Lum JK (2001) Development of a polymer impregnated concrete damping carriage for linear guideways for machine tools. Int J Mach Tools Manuf 41(3):431–441. https://doi.org/10.1016/S0890-6955(00)00072-9

Liu J, Vipulanandan C (2001) Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack. Tunn Undergr Sp Technol 16(4):311–321. https://doi.org/10.1016/S0886-7798(01)00053-0

Almusallam AA, Khan FM, Dulaijan SU, Al-Amoudi OSB (2003) Effectiveness of surface coatings in improving concrete durability. Cem Concr Compos 25(4–5 SPEC):473–481. https://doi.org/10.1016/S0958-9465(02)00087-2

Chi J, Zhang G, Xie Q, Ma C, Zhang G (2019) Progress in Organic Coatings High performance epoxy coating with cross-linkable solvent via Diels-Alder reaction for anti-corrosion of concrete. Prog Org Coatings vol 139, no September 2019, p 105473, 2020. https://doi.org/10.1016/j.porgcoat.2019.105473

Agavriloaie L, Oprea S, Barbuta M, Luca F (2012) Characterisation of polymer concrete with epoxy polyurethane acryl matrix. Constr Build Mater 37:190–196. https://doi.org/10.1016/j.conbuildmat.2012.07.037

Diogo AC (2015) Polymers in building and construction

Loos M (2015) Composites. In: Carbon nanotube reinforced composites. Elsevier, pp 37–72

Loos MR, Abetz V, Schulte K (2011) Fast and highly efficient one-pot synthesis of polyoxadiazole/carbon nanotube nanocomposites in mild acid. Polym Int 60(3):517–528. https://doi.org/10.1002/pi.2983

Jamshidi M, Ghasemi MJ, Hashemi A (2013) Effect of cyclic exposure of chemicals on compressive strength of polyester resin based polymer concrete. Adv Mater Res 687:185–190. https://doi.org/10.4028/www.scientific.net/AMR.687.185

Mohan P (2013) A critical review: the modification, properties, and applications of epoxy resins. Polym - Plast Technol Eng 52(2):107–125. https://doi.org/10.1080/03602559.2012.727057

Paluvai NR, Mohanty S, Nayak SK (2014) Synthesis and modifications of epoxy resins and their composites: a review. Polym - Plast Technol Eng 53(16):1723–1758. https://doi.org/10.1080/03602559.2014.919658

Khalil HPSA, Amico SC, Ashori A, Behranvand V, Al E (2017) Hybrid polymer composite materials properties and characterisation

Jin FL, Li X, Park SJ (2015) Synthesis and application of epoxy resins: A review. J Ind Eng Chem 29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026

Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409(18):3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038

Ouarhim W, Zari N, Bouhfid R, Qaiss AEK (2018) Mechanical performance of natural fibers-based thermosetting composites. Mech Phys Test Biocompos Fibre-Reinforced Compos Hybrid Compos pp 43–60. https://doi.org/10.1016/B978-0-08-102292-4.00003-5

Kandelbauer A, Tondi G, Zaske OC, Goodman SH (2014) Unsaturated polyesters and vinyl esters, 3rd ed. Elsevier Inc

Shokrieh MM, Heidari-Rarani M, Shakouri M, Kashizadeh E (2011) Effects of thermal cycles on mechanical properties of an optimized polymer concrete. Constr Build Mater 25(8):3540–3549. https://doi.org/10.1016/j.conbuildmat.2011.03.047

Ellenbecker TS, Roetert EP (1993) Characterization of polyester polymer and polymer concrete By C. Vipulanandan, Associate Member, ASCE, and E. Paul 2, vol 5, no 1, pp 62–82

Mullins MJ, Liu D, Sue H-J (2012) Mechanical properties of thermosets. Thermosets 28–61. https://doi.org/10.1533/9780857097637.1.28

Ohama Y Polymer-modified concrete and mortars properties and process technology

Andrew W (2016) Modification of polymer properties

Hong S, Kim H, Park SK (2016) Optimal mix and freeze-thaw durability of polysulfide polymer concrete. Constr Build Mater 127:539–545. https://doi.org/10.1016/j.conbuildmat.2016.10.056

Ferdous W et al (2020) Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Constr Build Mater 232:117229. https://doi.org/10.1016/j.conbuildmat.2019.117229

Yeon J (2020) Deformability of bisphenol A-type epoxy resin-based polymer concrete with different hardeners and fillers. Appl Sci 10(4):8–10. https://doi.org/10.3390/app10041336

Xiang Q, Xiao F (2020) Applications of epoxy materials in pavement engineering. Constr Build Mater 235:117529. https://doi.org/10.1016/j.conbuildmat.2019.117529

Unnikrishnan KP, Thachil ET (2006) Toughening of epoxy resins. Des Monomers Polym 9(2):129–152. https://doi.org/10.1163/156855506776382664

Khalid NHA et al (2015) Evaluation of effectiveness of methyl methacrylate as retarder additive in polymer concrete. Constr Build Mater 93:449–456. https://doi.org/10.1016/j.conbuildmat.2015.06.022

Jo BW, Park SK, Park JC (2008) Mechanical properties of polymer concrete made with recycled PET and recycled concrete aggregates. Constr Build Mater 22(12):2281–2291. https://doi.org/10.1016/j.conbuildmat.2007.10.009

Jin NJ, Yeon J, Min SH, Yeon KS (2018) Strength developments and deformation characteristics of MMA-modified vinyl ester polymer concrete. Int J Concr Struct Mater 12(1). https://doi.org/10.1186/s40069-018-0232-0

Jin NJ, Seung I, Choi YS, Yeon J (2017) Prediction of early-age compressive strength of epoxy resin concrete using the maturity method. Constr Build Mater 152:990–998. https://doi.org/10.1016/j.conbuildmat.2017.07.066

Gorninski JP, Dal Molin DC, Kazmierczak CS (2007) Comparative assessment of isophtalic and orthophtalic polyester polymer concrete: different costs, similar mechanical properties and durability. Constr Build Mater 21(3):546–555. https://doi.org/10.1016/j.conbuildmat.2005.09.003

Natarajan S, Pillai NN, Murugan S (2019) Experimental investigations on the properties of epoxy-resin-bonded cement concrete containing sea sand for use in unreinforced concrete applications. Materials (Basel) 12(4). https://doi.org/10.3390/ma12040645

Heidarnezhad F, Jafari K, Ozbakkaloglu T (2020) Effect of polymer content and temperature on mechanical properties of lightweight polymer concrete. Constr Build Mater 260:119853. https://doi.org/10.1016/j.conbuildmat.2020.119853

Asdollah-Tabar M, Heidari-Rarani M, Aliha MRM (2021) The effect of recycled PET bottles on the fracture toughness of polymer concrete. Compos Commun 25:100684. https://doi.org/10.1016/j.coco.2021.100684

Dunaj P, Berczynski S, Chodzko M, Niesterowicz B (2020) Finite element modeling of the dynamic properties of composite steel-polymer concrete beams. Materials (Basel) 13(7). https://doi.org/10.3390/ma13071630

Dunaj P, Powałka B, Berczyński S, Chodźko M, Okulik T (2020) Increasing lathe machining stability by using a composite steel–polymer concrete frame. CIRP J Manuf Sci Technol 31:1–13. https://doi.org/10.1016/j.cirpj.2020.09.009

Shen Y, Huang J, Ma X, Hao F, Lv J (2020) Experimental study on the free shrinkage of lightweight polymer concrete incorporating waste rubber powder and ceramsite. Compos Struct 242:112152. https://doi.org/10.1016/j.compstruct.2020.112152

Ma D et al (2021) Mesoscale modeling of epoxy polymer concrete under tension or bending. Compos Struct 256:113079. https://doi.org/10.1016/j.compstruct.2020.113079

Sokolowska JJ (2020) Long-term compressive strength of polymer concrete-like composites with various fillers. Materials (Basel) 13(5):9–11. https://doi.org/10.3390/ma13051207

Ma W, Zhao Z, Guo S, Zhao Y, Wu Z, Yang C (2020) Performance evaluation of the polyurethane-based composites prepared with recycled polymer concrete aggregate. Materials (Basel) 13(3):616. https://doi.org/10.3390/ma13030616

Lee SL, Mannan MA, Wan Ibrahim WH (2020) Polishing resistance of polymer concrete pavement using limestone aggregate. Int J Pavement Eng 21(4):474–482. https://doi.org/10.1080/10298436.2018.1489135

Ardalan RB, Emamzadeh ZN, Rasekh H, Joshaghani A, Samali B (2020) Physical and mechanical properties of polymer modified self-compacting concrete (SCC) using natural and recycled aggregates. J Sustain Cem Mater 9(1):1–16. https://doi.org/10.1080/21650373.2019.1666060

Mallick PK (2010) Thermoplastics and thermoplastic-matrix composites for lightweight automotive structures. Mater Des Manuf Light Veh 174–207. https://doi.org/10.1533/9781845697822.1.174

Bhatnagar N, Asija N (2016) Durability of high-performance ballistic composites. In: Lightweight ballistic composites. Elsevier, pp 231–283

Jefferson AJ, Arumugam V Repair of polymer composites: methodology, techniques, and challenges. Woodhead Publishing Limited

Gordin SD, Eslami AM, Price HL (2004) Gel time and temperature for two thermosetting resins

Sarathchandran C (2020) Interfacial characterization of immiscible polymer blends using rheology. In: Rheology of polymer blends and nanocomposites. Elsevier, pp 31–48

Jo BW, Park SK, Kim CH (2006) Mechanical properties of polyester polymer concrete using recycled polyethylene terephthalate. ACI Struct J 103(2):219–225. https://doi.org/10.14359/15179

Knippers J, Cremers J, Gabler M, Lienhard J (2011) Construction manual for polymers + membranes

Bedi R, Chandra R, Singh SP (2013) Mechanical properties of polymer concrete, no. April 2015. https://doi.org/10.1155/2013/948745

Choi KB, Min SH, Yeon KS (2016) Setting shrinkage characteristics of methyl methacrylate-modified vinyl ester polymer concrete. Am J Appl Sci 13(5):586–593. https://doi.org/10.3844/ajassp.2016.586.592

Wongpa J, Kiattikomol K, Jaturapitakkul C, Chindaprasirt P (2010) Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater Des 31(10):4748–4754. https://doi.org/10.1016/j.matdes.2010.05.012

Lokuge WP, Aravinthan T (2013) Mechanical properties of polymer concrete with different types of resin. From Mater. to Struct. Adv. Through Innov.—Proc. 22nd Australas. Conf. Mech. Struct. Mater. ACMSM 2012, pp 1147–1152. https://doi.org/10.1201/b15320-204

Józefiak K, Michalczyk R (2020) Prediction of structural performance of vinyl ester polymer concrete using FEM elasto-plastic model. Materials (Basel) 13(18):4034. https://doi.org/10.3390/ma13184034

Jafari K, Toufigh V (2017) Experimental and analytical evaluation of rubberized polymer concrete. Constr Build Mater 155:495–510. https://doi.org/10.1016/j.conbuildmat.2017.08.097

Elalaoui O, Ghorbel E, Mignot V, Ben Ouezdou M (2012) Mechanical and physical properties of epoxy polymer concrete after exposure to temperatures up to 250 °C. Constr Build Mater 27(1):415–424. https://doi.org/10.1016/j.conbuildmat.2011.07.027

dos Reis JML (2009) Effect of textile waste on the mechanical properties of polymer concrete. Mater Res 12(1):63–67. https://doi.org/10.1590/s1516-14392009000100007

Hashemi MJ, Jamshidi M, Aghdam JH (2018) Investigating fracture mechanics and flexural properties of unsaturated polyester polymer concrete (UP-PC). Constr Build Mater 163:767–775. https://doi.org/10.1016/j.conbuildmat.2017.12.115

Jafari K, Tabatabaeian M, Joshaghani A, Ozbakkaloglu T (2018) Optimizing the mixture design of polymer concrete: an experimental investigation. Constr Build Mater 167:185–196. https://doi.org/10.1016/j.conbuildmat.2018.01.191

Elalaoui O, Ghorbel E, Ben Ouezdou M (2018) Influence of flame retardant addition on the durability of epoxy based polymer concrete after exposition to elevated temperature. Constr Build Mater 192:233–239. https://doi.org/10.1016/j.conbuildmat.2018.10.132

Hameed AM, Hamza MT (2019) Characteristics of polymer concrete produced from wasted construction materials. Energy Procedia 157(2018):43–50. https://doi.org/10.1016/j.egypro.2018.11.162

Jin NJ, Yeon J, Seung I, Yeon KS (2017) Effects of curing temperature and hardener type on the mechanical properties of bisphenol F-type epoxy resin concrete. Constr Build Mater 156:933–943. https://doi.org/10.1016/j.conbuildmat.2017.09.053

Ghassemi P, Toufigh V (2020) Durability of epoxy polymer and ordinary cement concrete in aggressive environments. Constr Build Mater 234:117887. https://doi.org/10.1016/j.conbuildmat.2019.117887

Ahmed HU, Faraj RH, Hilal N, Mohammed AA, Sherwani AFH (2021) Use of recycled fibers in concrete composites: a systematic comprehensive review. Compos Part B Eng 215:108769. https://doi.org/10.1016/j.compositesb.2021.108769

Guendouz M, Boukhelkhal DJ (2018) Physical, mechanical and thermal properties of Crushed Sand Concrete containing Rubber Waste. MATEC web of conferences, 149, 01076. https://doi.org/10.1051/matecconf/201814901039

Guendouz M, Boukhelkhal DJ (2018) Recycling of rubber waste in sand concrete. J Build Mater Struct (2017) 4:42–49

Guendouz M, Debieb F, Boukendakdji O, Kadri EH, Bentchikou M, Soualhi H (2016) Use of plastic waste in sand concrete. J Mater Environ Sci 7(2):382–389

Ceran ÖB, Şimşek B, Uygunoğlu T, Şara ON (2019) PVC concrete composites: comparative study with other polymer concrete in terms of mechanical, thermal and electrical properties. J Mater Cycles Waste Manag 21(4):818–828. https://doi.org/10.1007/s10163-019-00846-0

B. Zegardlo, M. Szelag, P. Ogrodnik, and A. Bombik, “Physico-mechanical properties and microstructure of polymer concrete with recycled glass aggregate,” Materials (Basel)., vol. 11, no. 7, 2018, doi: https://doi.org/10.3390/ma11071213.

B. Adhikari and S. Maiti, “Reclamation and recycling of waste rubber,” vol. 25, no. March, pp. 909–948, 2000.

Rashid K, Wang Y, Ueda T (2019) Influence of continuous and cyclic temperature durations on the performance of polymer cement mortar and its composite with concrete. Compos Struct 215:214–225. https://doi.org/10.1016/j.compstruct.2019.02.057

Guerrieri M, Sanjayan J, Collins F (2010) Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater Struct Constr 43(6):765–773. https://doi.org/10.1617/s11527-009-9546-3

Nodehi M, Taghvaee VM (2021) Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circ Econ Sustain. https://doi.org/10.1007/s43615-021-00029-w

Rakngan W, Williamson T, Ferron RD, Sant G, Juenger MCG (2018) Controlling workability in alkali-activated Class C fly ash. Constr Build Mater 183:226–233. https://doi.org/10.1016/j.conbuildmat.2018.06.174

Ren J, Zhang L, San Nicolas R (2020) Degradation process of alkali-activated slag/fly ash and Portland cement-based pastes exposed to phosphoric acid. Constr Build Mater 232:117209. https://doi.org/10.1016/j.conbuildmat.2019.117209

Bakharev T, Sanjayan JG, Cheng YB (2003) Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res 33(10):1607–1611. https://doi.org/10.1016/S0008-8846(03)00125-X

Nodehi M, Mohamad Taghvaee V (2021) Sustainable concrete for circular economy: a review on use of waste glass. Glas Struct Eng. https://doi.org/10.1007/s40940-021-00155-9

Ahmed HU, Mohammed AS, Mohammed AA, Faraj RH (2021) Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLoS ONE 16(6):1–26. https://doi.org/10.1371/journal.pone.0253006

Ribeiro MCS, Tavares CML, Ferreira AJM Chemical resistance of epoxy and polyester polymer concrete to acids and salts

Gao Y, Romero P, Zhang H, Huang M, Lai F (2019) Unsaturated polyester resin concrete: a review. Constr Build Mater 228:116709. https://doi.org/10.1016/j.conbuildmat.2019.116709

Reis JML (2010) Fracture assessment of polymer concrete in chemical degradation solutions. Constr Build Mater 24(9):1708–1712. https://doi.org/10.1016/j.conbuildmat.2010.02.020

Jamshidi M, Alizadeh M, Salar M, Hashemi A (2013) Durability of polyester resin concrete in different chemical solutions. Adv Mater Res 687:150–154. https://doi.org/10.4028/www.scientific.net/AMR.687.150

Melo Neto AA, Cincotto MA, Repette W (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res 38(4):565–574. https://doi.org/10.1016/j.cemconres.2007.11.002

Ismail I et al (2013) Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr Build Mater 48:1187–1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106

Man X, Aminul Haque M, Chen B (2019) Engineering properties and microstructure analysis of magnesium phosphate cement mortar containing bentonite clay. Constr Build Mater 227:116656. https://doi.org/10.1016/j.conbuildmat.2019.08.037

Emamian SA, Eskandari-Naddaf H (2019) Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by ANN and GEP. Constr Build Mater 218:8–27. https://doi.org/10.1016/j.conbuildmat.2019.05.092

Çakir Ö, Aköz F (2008) Effect of curing conditions on the mortars with and without GGBFS. Constr Build Mater 22(3):308–314. https://doi.org/10.1016/j.conbuildmat.2006.08.013

Abdollahnejad Z et al (2020) Microstructural analysis and strength development of one-part alkali-activated slag/ceramic binders under different curing regimes. Waste Biomass Valoriz 11(6):3081–3096. https://doi.org/10.1007/s12649-019-00626-9

Chen W, Peng R, Straub C, Yuan B (2020) Promoting the performance of one-part alkali-activated slag using fine lead-zinc mine tailings. Constr Build Mater 236:117745. https://doi.org/10.1016/j.conbuildmat.2019.117745

Abdollahnejad Z, Mastali M, Woof B, Illikainen M (2020) High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Constr Build Mater 241:118129. https://doi.org/10.1016/j.conbuildmat.2020.118129

Ramli M, Tabassi AA, Hoe KW (2013) Porosity, pore structure and water absorption of polymer-modified mortars: an experimental study under different curing conditions. Compos Part B Eng 55:221–233. https://doi.org/10.1016/j.compositesb.2013.06.022

Mendivil-Escalante JM, Gómez-Soberón JM, Almaral-Sánchez JL, Cabrera-Covarrubias FG (2017) Metamorphosis in the porosity of recycled concretes through the use of a recycled polyethylene terephthalate (PET) additive. Correlations between the porous network and concrete properties. Materials (Basel) 10(2). https://doi.org/10.3390/ma10020176

Abdel-Gawwad HA, Rashad AM, Heikal M (2019) Sustainable utilization of pretreated concrete waste in the production of one-part alkali-activated cement. J Clean Prod 232:318–328. https://doi.org/10.1016/j.jclepro.2019.05.356

Kooshkaki A, Eskandari-Naddaf H (2019) Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling. Constr Build Mater 212:176–191. https://doi.org/10.1016/j.conbuildmat.2019.03.243

Yin J, Zhang J, Wang W (2019) Effective resin content and its effect on the overall performance of polymer concrete for precision machine tools. Constr Build Mater 222:203–212. https://doi.org/10.1016/j.conbuildmat.2019.06.144

Ahmad MR, Chen B, Shah SFA (2020) Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars. Constr Build Mater 265:120320. https://doi.org/10.1016/j.conbuildmat.2020.120320

Borinaga-Treviño R, Orbe A, Canales J, Norambuena-Contreras J (2020) Experimental evaluation of cement mortars with recycled brass fibres from the electrical discharge machining process. Constr Build Mater 246. https://doi.org/10.1016/j.conbuildmat.2020.118522

Aguirre-Guerrero AM, Mejía de Gutiérrez R (2020) Alkali-activated protective coatings for reinforced concrete exposed to chlorides. Constr Build Mater no. xxxx. https://doi.org/10.1016/j.conbuildmat.2020.121098

Knapen E, Van Gemert D (2009) Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem Concr Res 39(1):6–13. https://doi.org/10.1016/j.cemconres.2008.10.003

Zheng W et al (2019) Progress in Organic Coatings Enhancing chloride ion penetration resistance into concrete by using graphene oxide reinforced waterborne epoxy coating 138. https://doi.org/10.1016/j.porgcoat.2019.105389

Mahdi F, Abbas H, Khan AA (2013) Flexural, shear and bond strength of polymer concrete utilizing recycled resin obtained from post consumer PET bottles. Constr Build Mater 44:798–811. https://doi.org/10.1016/j.conbuildmat.2013.03.081

Liu M, Han S, Pan J, Ren W (2018) Study on cohesion performance of waterborne epoxy resin emulsified asphalt as interlayer materials. Constr Build Mater 177:72–82. https://doi.org/10.1016/j.conbuildmat.2018.05.043

Weng Y, Li M, Wong TN, Tan MJ (2021) Synchronized concrete and bonding agent deposition system for interlayer bond strength enhancement in 3D concrete printing. Autom Constr 123:103546. https://doi.org/10.1016/j.autcon.2020.103546

Wang L, Tian Z, Ma G, Zhang M (2020) Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: experiments and molecular dynamics studies. Cem Concr Compos 110:103571. https://doi.org/10.1016/j.cemconcomp.2020.103571

Bruzzone L, Baggetta M, Nodehi SE, Bilancia P, Fanghella P (2021) Functional design of a hybrid leg-wheel-track ground mobile robot. Machines 9(1):1–11. https://doi.org/10.3390/machines9010010