Epitranscriptomic mRNA modifications governing plant stress responses: underlying mechanism and potential application

Wiley - Tập 20 Số 12 - Trang 2245-2257 - 2022
Jianzhong Hu1,2,3, Jing Cai1,3, Tao Xu2, Hunseung Kang1,2
1Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
2Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, China
3these authors contributed equally to this work

Tóm tắt

Summary

Plants inevitably encounter environmental adversities, including abiotic and biotic stresses, which significantly impede plant growth and reduce crop yield. Thus, fine‐tuning the fate and function of stress‐responsive RNAs is indispensable for plant survival under such adverse conditions. Recently, post‐transcriptional RNA modifications have been studied as a potent route to regulate plant gene expression under stress. Among over 160 mRNA modifications identified to date, N6‐methyladenosine (m6A) in mRNAs is notable because of its multifaceted roles in plant development and stress response. Recent transcriptome‐wide mapping has revealed the distribution and patterns of m6A in diverse stress‐responsive mRNAs in plants, building a foundation for elucidating the molecular link between m6A and stress response. Moreover, the identification and characterization of m6A writers, readers and erasers in Arabidopsis and other model crops have offered insights into the biological roles of m6A in plant abiotic stress responses. Here, we review the recent progress of research on mRNA modifications, particularly m6A, and their dynamics, distribution, regulation and biological functions in plant stress responses. Further, we posit potential strategies for breeding stress‐tolerant crops by engineering mRNA modifications and propose the future direction of research on RNA modifications to gain a much deeper understanding of plant stress biology.

Từ khóa


Tài liệu tham khảo

10.1016/j.cell.2015.08.011

10.1093/jmcb/mjaa023

10.1016/j.celrep.2018.10.020

10.1105/tpc.17.00833

10.1038/nature25784

10.1073/pnas.2003733117

10.1104/pp.114.236083

10.1186/s12284-021-00502-y

10.1021/acschembio.7b00906

10.7717/peerj.12719

10.1016/j.molp.2017.09.013

10.1016/j.cell.2018.06.046

10.1038/nature11112

10.1038/nature16998

10.1038/ncomms12626

10.1105/tpc.16.00912

10.1111/j.1365-313X.2006.02999.x

10.1016/j.cell.2021.01.005

10.1016/j.cell.2019.06.013

10.1111/pbi.13733

10.1186/s12870-021-03289-8

10.1111/nph.18069

10.1016/j.molp.2021.01.013

10.1111/tpj.15270

10.1093/plphys/kiab509

10.3389/fpls.2019.00500

10.1038/s41586-019-1016-7

10.3390/plants10061101

10.3390/ijms21186707

10.1007/s12374-022-09351-8

10.1186/s12870-020-02595-x

10.1038/s41392-020-00450-x

10.1101/gad.269415.115

10.1002/pld3.239

10.1016/j.tig.2019.12.007

10.1038/nature20568

10.1111/imb.12584

10.1186/s13059-018-1443-z

10.1093/nar/gkaa269

10.1186/s12985-018-0997-4

10.1038/nmeth.3453

10.3390/plants9091080

10.1038/s41589-019-0327-1

10.3389/fonc.2021.704543

10.3390/ijms21072462

10.1038/ncomms6630

10.1093/jxb/erab074

10.1104/pp.19.00987

10.1111/jipb.13167

10.3390/plants11010103

10.1073/pnas.1703139114

10.3389/fmicb.2021.745576

10.1016/j.cell.2012.05.003

10.1104/pp.19.00323

10.1104/pp.105.065649

10.7554/eLife.49658

10.1038/nature19342

10.26508/lsa.201900393

10.1038/s41587-021-00949-w

10.1038/nrg.2015.10

10.1021/jacs.8b05012

10.1111/nph.14586

10.1016/j.cell.2013.10.047

10.1105/tpc.17.00854

10.1016/j.pbi.2021.102047

10.1016/j.devcel.2016.06.008

10.1016/j.molcel.2019.04.025

10.1093/femsle/fny286

10.1111/jipb.12917

10.1111/ppl.13505

10.3389/fpls.2016.00817

10.1016/j.cell.2017.03.031

10.1016/j.molp.2021.01.014

10.1186/s12870-020-02505-1

10.1093/jxb/eraa100

10.3389/fpls.2021.712713

10.1016/j.devcel.2020.03.009

10.1111/mpp.13097

10.1105/tpc.15.00591

10.1186/s13059-015-0839-2

10.1186/s13059-022-02612-2

10.3389/fpls.2017.01367

10.1016/j.cell.2015.05.014

10.3390/ijms23042091

10.1186/s12870-017-1206-0

10.1371/journal.pone.0185612

10.1105/tpc.17.00934

10.3390/ijms22041949

10.1038/s41587-020-0572-6

10.1038/s41467-017-02770-z

10.1038/s41467-021-22083-6

10.1002/advs.202103628

10.1093/nar/gky130

Yang D., 2021, RNA N6‐methyladenosine responds to low‐temperature stress in tomato anthers, Front. Plant Sci., 12, 1077

10.1104/pp.20.00382

10.1038/s41587-021-00982-9

10.1111/pbi.13149

10.1038/s41580-019-0168-5

10.1080/15476286.2021.1992996

10.1186/s13059-021-02410-2

10.3389/fmicb.2021.656302

10.1126/sciadv.aax0250

10.1038/nature21355

10.1016/j.plantsci.2020.110801

10.1038/nature15377

10.1186/s13059-021-02385-0

10.1186/s13059-019-1771-7

10.1038/nbt.3811