Các liên kết tế bào biểu mô điều chỉnh quá trình phiên mã qua tín hiệu Rac-actin-MAL

Journal of Cell Science - Tập 121 Số 7 - Trang 1025-1035 - 2008
Stephan Busche1, Arnaud Descot1, Sylvia Julien1, Harald Genth2, Guido Posern1
1Department of Molecular Biology, AG Regulation of Gene Expression, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
2Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany

Tóm tắt

Các liên kết tế bào biểu mô là những cấu trúc đặc biệt kết nối các tế bào riêng lẻ trong mô biểu mô. Chúng có mối liên hệ động và chức năng với bộ xương tế bào actin. Việc tháo dỡ các liên kết này là một sự kiện chính trong quá trình sinh lý và bệnh lý, nhưng cách mà điều này ảnh hưởng đến sự biểu hiện gen vẫn chưa được xác định rõ. Ở đây, chúng tôi điều tra xem việc tháo dỡ các liên kết có điều chỉnh quá trình phiên mã qua yếu tố phản ứng huyết thanh (SRF) và đồng hoạt hóa viên MAL/MRTF hay không. Sự tách rời tính toàn vẹn biểu mô phụ thuộc vào Ca2+ được phát hiện có mối tương quan chặt chẽ với quá trình phiên mã trung gian SRF. Ở các tế bào thiếu sự biểu hiện của E-cadherin, không quan sát thấy sự kích hoạt SRF. Chúng tôi cung cấp bằng chứng trực tiếp cho thấy quá trình tín hiệu diễn ra qua actin monomeric và MAL. Sự tách rời các liên kết tế bào biểu mô đi kèm với việc kích thích RhoA và Rac1. Tuy nhiên, sử dụng các độc tố cytotoxin từ Clostridium, chúng tôi chứng minh rằng Rac, nhưng không phải RhoA, là cần thiết cho sự kích thích SRF và gen mục tiêu ở các tế bào biểu mô, trái ngược với các nguyên bào sợi được kích thích bởi huyết thanh. Khả năng co bóp của actomyosin là một điều kiện tiên quyết cho việc tín hiệu nhưng không kích thích được sự hoạt hóa SRF, loại bỏ vai trò đủ của con đường Rho-ROCK-actomyosin. Chúng tôi kết luận rằng các liên kết tế bào biểu mô phụ thuộc vào E-cadherin tạo điều kiện cho sự kích hoạt phiên mã thông qua Rac, G-actin, MAL và SRF khi xảy ra sự phân giải biểu mô.

Từ khóa


Tài liệu tham khảo

Arsenian, S., Weinhold, B., Oelgeschlager, M., Ruther, U. and Nordheim, A. (1998). Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J.17, 6289-6299.

Balzac, F., Avolio, M., Degani, S., Kaverina, I., Torti, M., Silengo, L., Small, J. V. and Retta, S. F. (2005). E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J. Cell Sci.118, 4765-4783.

Braga, V. M. and Yap, A. S. (2005). The challenges of abundance: epithelial junctions and small GTPase signalling. Curr. Opin. Cell Biol.17, 466-474.

Braga, V. M., Machesky, L. M., Hall, A. and Hotchin, N. A. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J. Cell Biol.137, 1421-1431.

Brennan, J. K., Mansky, J., Roberts, G. and Lichtman, M. A. (1975). Improved methods for reducing calcium and magnesium concentrations in tissue culture medium: application to studies of lymphoblast proliferation in vitro. In Vitro11, 354-360.

Capaldo, C. T. and Macara, I. G. (2007). Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol. Biol. Cell18, 189-200.

Chaves-Olarte, E., Freer, E., Parra, A., Guzman-Verri, C., Moreno, E. and Thelestam, M. (2003). R-Ras glucosylation and transient RhoA activation determine the cytopathic effect produced by toxin B variants from toxin A-negative strains of Clostridium difficile. J. Biol. Chem.278, 7956-7963.

Copeland, J. W. and Treisman, R. (2002). The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol. Biol. Cell13, 4088-4099.

de Rooij, J., Kerstens, A., Danuser, G., Schwartz, M. A. and Waterman-Storer, C. M. (2005). Integrin-dependent actomyosin contraction regulates epithelial cell scattering. J. Cell Biol.171, 153-164.

Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. and Weis, W. I. (2005). Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell123, 903-915.

Du, K. L., Chen, M., Li, J., Lepore, J. J., Mericko, P. and Parmacek, M. S. (2004). Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells. J. Biol. Chem.279, 17578-17586.

Fan, L., Sebe, A., Peterfi, Z., Masszi, A., Thirone, A. C., Rotstein, O. D., Nakano, H., McCulloch, C. A., Szaszi, K., Mucsi, I. et al. (2007). Cell contact-dependent regulation of epithelial-myofibroblast transition via the Rho-Rho kinase-phospho-myosin pathway. Mol. Biol. Cell18, 1083-1097.

Giannone, G. and Sheetz, M. P. (2006). Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol.16, 213-223.

Gineitis, D. and Treisman, R. (2001). Differential usage of signal transduction pathways defines two types of serum response factor target gene. J. Biol. Chem.276, 24531-24539.

Grunert, S., Jechlinger, M. and Beug, H. (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell Biol.4, 657-665.

Gumbiner, B. M. (2005). Regulation of cadherin-mediated adhesion in morphogenesis. Nat. Rev. Mol. Cell Biol.6, 622-634.

Gumbiner, B., Stevenson, B. and Grimaldi, A. (1988). The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol.107, 1575-1587.

Halbleib, J. M. and Nelson, W. J. (2006). Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev.20, 3199-3214.

Hill, C. S. and Treisman, R. (1995). Differential activation of c-fos promoter elements by serum, lysophosphatidic acid, G proteins and polypeptide growth factors. EMBO J.14, 5037-5047.

Hill, C. S., Wynne, J. and Treisman, R. (1995). The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell81, 1159-1170.

Huelsenbeck, J., Dreger, S., Gerhard, R., Barth, H., Just, I. and Genth, H. (2007). Difference in the cytotoxic effects of toxin B from Clostridium difficile strain VPI 10463 and toxin B from variant Clostridium difficile strain 1470. Infect. Immun.75, 801-809.

Ivanov, A. I., McCall, I. C., Parkos, C. A. and Nusrat, A. (2004). Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol. Biol. Cell15, 2639-2651.

Janda, E., Nevolo, M., Lehmann, K., Downward, J., Beug, H. and Grieco, M. (2006). Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene25, 7117-7130.

Jou, T. S. and Nelson, W. J. (1998). Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. J. Cell Biol.142, 85-100.

Klingelhofer, J., Laur, O. Y., Troyanovsky, R. B. and Troyanovsky, S. M. (2002). Dynamic interplay between adhesive and lateral E-cadherin dimers. Mol. Cell. Biol.22, 7449-7458.

Kooistra, M. R., Dube, N. and Bos, J. L. (2007). Rap1: a key regulator in cell-cell junction formation. J. Cell Sci.120, 17-22.

Larue, L., Ohsugi, M., Hirchenhain, J. and Kemler, R. (1994). E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl. Acad. Sci. USA91, 8263-8267.

Li, J., Zhu, X., Chen, M., Cheng, L., Zhou, D., Lu, M. M., Du, K., Epstein, J. A. and Parmacek, M. S. (2005). Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proc. Natl. Acad. Sci. USA102, 8916-8921.

Li, S., Chang, S., Qi, X., Richardson, J. A. and Olson, E. N. (2006). Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Mol. Cell. Biol.26, 5797-5808.

Lozano, E., Betson, M. and Braga, V. M. (2003). Tumor progression: small GTPases and loss of cell-cell adhesion. BioEssays25, 452-463.

Lynch, E. A., Stall, J., Schmidt, G., Chavrier, P. and D'Souza-Schorey, C. (2006). Proteasome-mediated degradation of Rac1-GTP during epithelial cell scattering. Mol. Biol. Cell17, 2236-2242.

Mack, C. P., Somlyo, A. V., Hautmann, M., Somlyo, A. P. and Owens, G. K. (2001). Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J. Biol. Chem.276, 341-347.

Masszi, A., Fan, L., Rosivall, L., McCulloch, C. A., Rotstein, O. D., Mucsi, I. and Kapus, A. (2004). Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am. J. Pathol.165, 1955-1967.

Matter, K. and Balda, M. S. (2003). Signalling to and from tight junctions. Nat. Rev. Mol. Cell Biol.4, 225-236.

Miralles, F., Posern, G., Zaromytidou, A. I. and Treisman, R. (2003). Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell113, 329-342.

Miyake, Y., Inoue, N., Nishimura, K., Kinoshita, N., Hosoya, H. and Yonemura, S. (2006). Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp. Cell Res.312, 1637-1650.

Mohun, T., Garrett, N. and Treisman, R. (1987). Xenopus cytoskeletal actin and human c-fos gene promoters share a conserved protein-binding site. EMBO J.6, 667-673.

Morita, T., Mayanagi, T. and Sobue, K. (2007). Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. J. Cell Biol.179, 1027-1042.

Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N. and Kaibuchi, K. (2001). Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell-cell adhesion sites. J. Cell Sci.114, 1829-1838.

Noren, N. K., Niessen, C. M., Gumbiner, B. M. and Burridge, K. (2001). Cadherin engagement regulates Rho family GTPases. J. Biol. Chem.276, 33305-33308.

Oh, J., Richardson, J. A. and Olson, E. N. (2005). Requirement of myocardin-related transcription factor-B for remodeling of branchial arch arteries and smooth muscle differentiation. Proc. Natl. Acad. Sci. USA102, 15122-15127.

Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. and Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature392, 190-193.

Pokutta, S., Herrenknecht, K., Kemler, R. and Engel, J. (1994). Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur. J. Biochem.223, 1019-1026.

Posern, G. and Treisman, R. (2006). Actin' together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol.16, 588-596.

Posern, G., Sotiropoulos, A. and Treisman, R. (2002). Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol. Biol. Cell13, 4167-4178.

Posern, G., Miralles, F., Guettler, S. and Treisman, R. (2004). Mutant actins that stabilise F-actin use distinct mechanisms to activate the SRF coactivator MAL. EMBO J.23, 3973-3983.

Ren, X. D. and Schwartz, M. A. (2000). Determination of GTP loading on Rho. Meth. Enzymol.325, 264-272.

Sahai, E. and Marshall, C. J. (2002). ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat. Cell Biol.4, 408-415.

Sahai, E. and Olson, M. F. (2006). Purification of TAT-C3 exoenzyme. Meth. Enzymol.406, 128-140.

Sahai, E., Alberts, A. S. and Treisman, R. (1998). RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J.17, 1350-1361.

Sotiropoulos, A., Gineitis, D., Copeland, J. and Treisman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell98, 159-169.

Sun, Y., Boyd, K., Xu, W., Ma, J., Jackson, C. W., Fu, A., Shillingford, J. M., Robinson, G. W., Hennighausen, L., Hitzler, J. K. et al. (2006). Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Mol. Cell. Biol.26, 5809-5826.

Vartiainen, M. K., Guettler, S., Larijani, B. and Treisman, R. (2007). Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science316, 1749-1752.

Vasioukhin, V., Bauer, C., Yin, M. and Fuchs, E. (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell100, 209-219.

Wells, C. M., Walmsley, M., Ooi, S., Tybulewicz, V. and Ridley, A. J. (2004). Rac1-deficient macrophages exhibit defects in cell spreading and membrane ruffling but not migration. J. Cell Sci.117, 1259-1268.

Winer, J., Jung, C. K., Shackel, I. and Williams, P. M. (1999). Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal. Biochem.270, 41-49.

Yamada, S., Pokutta, S., Drees, F., Weis, W. I. and Nelson, W. J. (2005). Deconstructing the cadherin-catenin-actin complex. Cell123, 889-901.

Ziegler, W. H., Liddington, R. C. and Critchley, D. R. (2006). The structure and regulation of vinculin. Trends Cell Biol.16, 453-460.

Zondag, G. C., Evers, E. E., ten Klooster, J. P., Janssen, L., van der Kammen, R. A. and Collard, J. G. (2000). Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J. Cell Biol.149, 775-782.